首页> 外文期刊>International Journal of Heat and Mass Transfer >Modeling the effect of droplet shape and solid concentration on the suspension plasma spraying
【24h】

Modeling the effect of droplet shape and solid concentration on the suspension plasma spraying

机译:模拟液滴形状和固体浓度对悬浮等离子体喷涂的影响

获取原文
获取原文并翻译 | 示例
       

摘要

A three-dimensional unsteady magnetohydrodynamic model employing a two-way coupled Eulerian-Lagrangian method has been developed to simulate the suspension plasma spraying (SPS) process. In the current study, the developed model is employed to study the effect of droplets' shape and solid concentration (sub-micron yttria-stabilized zirconia (YSZ)) on the SPS process. Assuming the droplets as the sphere is an idealization. While a droplet moves through the plasma gas field, circulation of the internal liquid, which depends on the ratio of the dynamic viscosity of suspension droplets, and plasma gas, starts. Moreover, the droplets are deformed as a result of non-uniform pressure forces acting on their surface. As the droplets' shape distorts, the drag coefficient changes. Therefore, using a drag coefficient model, incorporating the droplets' distortion is crucial to achieving an accurate spraying model. In the current study, a dynamic drag law is applied to analyze the effect of droplets/particles' shape on the SPS process. As a result of the catastrophic breakup within the plasma core area, the breakup model, Kelvin-Helmholtz Rayleigh-Taylor (KHRT), is used for stimulating the droplets/particles' atomization. The inflight particles' conditions (temperature, speed, and size) are computed by tracking the sprayed droplets even after the solvent evaporates. It was concluded that the percentage of the molten particles in the case of applying dynamic drag law (non-spherical particles) decreases significantly compared to the case of using spherical particles. The effect of suspension concentration is also studied. It was shown that using a higher solid concentration (20 compared to 10 wt.% YSZ) provides denser coating as a result of the larger molten landed particles with higher velocities.
机译:已经开发了一种采用双向耦合欧拉维拉语方法的三维不稳定磁力流体动力学模型来模拟悬浮等离子体喷涂(SPS)过程。在目前的研究中,开发模型用于研究液滴形状和固体浓度(亚微米yTTRIA稳定的氧化锆(YSZ))对SPS过程的影响。假设液滴作为球体是一种理想化。虽然液滴通过等离子体气体场移动,但内液的循环取决于悬浮液滴的动态粘度和等离子体气体的比率开始。此外,由于非均匀的压力作用在其表面上,液滴变形。随着液滴形状扭曲,拖动系数变化。因此,使用拖动系数模型,包含液滴失真对于实现精确的喷射模型至关重要。在目前的研究中,应用动态拖累法来分析液滴/粒子形状对SPS过程的影响。由于等离子体核心区域内的灾难性分解,用于刺激液滴/颗粒的雾化。即使在溶剂蒸发之后,通过跟踪喷涂的液滴,计算发泡粒子的条件(温度,速度和尺寸)。得出结论是,与使用球形颗粒的情况相比,施加动态阻力法(非球形颗粒)的情况下熔融颗粒的百分比显着降低。还研究了悬浮浓度的影响。结果表明,使用较高的固体浓度(20重量%YSZ相比,ysz)提供更较大的熔融落地颗粒的更耐熔速的浓度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号