...
首页> 外文期刊>International Journal of Heat and Mass Transfer >Simultaneous prediction of dryout heat flux and local temperature for thin film evaporation in micropillar wicks
【24h】

Simultaneous prediction of dryout heat flux and local temperature for thin film evaporation in micropillar wicks

机译:同时预测微柱芯吸干过程的干热通量和局部温度

获取原文
获取原文并翻译 | 示例

摘要

Porous wicks are of great interest in thermal management because they are capable of passively supplying liquid for thin film evaporation, a promising method to reliably dissipate heat in high performance electronics. While dryout heat flux has been well-characterized for many wick configurations, key design information is missing as many previous models cannot determine the distribution of evaporator surface temperature. Temperature gradients are inherent to the passive capillary pumping mechanism since the shape of the liquid/vapor interface is a function of the local liquid pressure, causing spatial variation of permeability and heat transfer coefficient (HTC). Here, we present a comprehensive modeling framework for thin film evaporation in micropillar wicks that can predict dryout heat flux and local temperature simultaneously. Our numerical approach captures the effect of varying interfacial curvature across the micropillar evaporator to determine the spatial distributions of temperature and heat flux. Heat transfer and capillary flow in the wick are coupled in a computationally efficient manner via incorporation of parametric studies to relate geometry and interface shape to local permeability and HTC. This model predicts notable variations of HTC (similar to 30%) across the micropillar wick, highlighting the significant effects of interfacial curvature. Further, we are able to quantify the tradeoff associated with enhancing either dry out heat flux or HTC by optimizing geometry. Our model provides all of the information needed to guide the design and optimization of micropillar wicks by resolving evaporator temperature distributions in addition to dryout heat flux. (C) 2019 Published by Elsevier Ltd.
机译:多孔灯芯在热管理中非常受关注,因为它们能够被动地供应液体以进行薄膜蒸发,这是一种可靠地散发高性能电子设备中热量的有前途的方法。尽管对于许多油芯配置,干热通量已经得到了很好的描述,但由于许多以前的模型无法确定蒸发器表面温度的分布,因此缺少了关键的设计信息。温度梯度是被动毛细管泵送机构固有的,因为液体/蒸汽界面的形状是局部液体压力的函数,从而导致渗透率和传热系数(HTC)的空间变化。在这里,我们为微柱芯中的薄膜蒸发提供了一个全面的建模框架,该框架可以同时预测变干热通量和局部温度。我们的数值方法捕获了跨微柱蒸发器的界面曲率变化的影响,以确定温度和热通量的空间分布。吸热管中的传热和毛细流动通过结合参数研究以计算有效的方式耦合,从而将几何形状和界面形状与局部渗透率和HTC相关联。该模型预测了HTC在微柱芯上的显着变化(约30%),突出了界面曲率的显着影响。此外,我们能够通过优化几何形状来量化与增强干热通量或HTC相关的权衡。我们的模型通过解决蒸发器的温度分布以及变干的热通量,提供了指导微柱芯的设计和优化所需的所有信息。 (C)2019由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号