...
首页> 外文期刊>International Journal of Fatigue >Microstructure-sensitive accumulation of plastic strain due to ratcheting in bearing steels subject to Rolling Contact Fatigue
【24h】

Microstructure-sensitive accumulation of plastic strain due to ratcheting in bearing steels subject to Rolling Contact Fatigue

机译:滚动接触疲劳引起的轴承钢棘轮引起的塑性应变对微观结构的敏感累积

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

It is well known that the empirical parameters correlated to Rolling Contact Fatigue (RCF) bench tests are sensitive to the microstructural attributes of the bearing material. The key driver for this sensitivity is the accumulated deformation accentuated by the difference in the mechanical properties of the carbide precipitate, matrix, and interface. This manuscript studies the accumulation of deformation/micro-plastic strain during RCF due to ratcheting behavior in the microstructure of bearing steels. The objective of this study is to understand the contribution of carbide particles towards ratcheting. Homogeneous elastic plastic finite element (FE) simulations of the ball-on-rod RCF test using a 'global-local' approach is used, and is applicable when the drivers for fatigue degradation are controlled primarily by the heterogeneous field represented by the carbides. The global model simulates the overall ball-on-rod RCF test considering homogeneous material, while the local model accounts for the influence of the carbide particles in the microstructure. The results from finite element simulations reveal that carbide particles act as stress concentrators and introduce a shear stress cycle with a non-zero mean stress at the scale of the carbide microstructure, which promotes strain accumulation via ratcheting. A study on the spatial variation of ratcheting behavior in the vicinity of the carbide particle is also presented. The results presented translate to other through and case-hardened bearing steels subject to RCF and highlight the important role played by the carbide microstructure in controlling the spatial and temporal rate of fatigue damage accumulation via localized ratcheting. The approach presented has general applicability to heterogeneous materials with other forms of heterogeneity such as inclusions, pores and grain boundaries, subject to multiaxial fatigue.
机译:众所周知,与滚动接触疲劳(RCF)基准测试相关的经验参数对轴承材料的微观结构属性敏感。这种敏感性的关键驱动因素是由于碳化物沉淀,基体和界面的机械性能差异而加剧的累积变形。该手稿研究了在轴承钢的微观结构中由于棘轮行为引起的RCF变形/微塑性应变的累积。这项研究的目的是了解碳化物颗粒对棘轮的贡献。使用“全局局部”方法对球杆RCF测试进行均质弹性塑性有限元(FE)模拟,并且适用于疲劳退化的驱动因素主要由碳化物代表的异质场控制的情况。整体模型模拟了考虑均质材料的整体杆上RCF测试,而局部模型考虑了微结构中碳化物颗粒的影响。有限元模拟的结果表明,碳化物颗粒充当应力集中器,并在碳化物微观结构的尺度上引入了具有非零平均应力的剪切应力循环,从而通过棘齿促进了应变累积。还提出了在碳化物颗粒附近棘轮行为的空间变化的研究。提出的结果可转化为其他经过RCF的直通和表面硬化轴承钢,并突显了碳化物微结构在通过局部棘轮控制疲劳损伤累积的时空速率方面所起的重要作用。提出的方法通常适用于具有其他形式的异质性的异质材料,例如夹杂物,孔隙和晶界,这些材料会遭受多轴疲劳。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号