首页> 外文期刊>International Journal of Fatigue >Fatigue behavior and failure mechanism of basalt FRP composites under long-term cyclic loads
【24h】

Fatigue behavior and failure mechanism of basalt FRP composites under long-term cyclic loads

机译:长期循环荷载下玄武岩FRP复合材料的疲劳行为和破坏机理

获取原文
获取原文并翻译 | 示例
           

摘要

This paper studies the fatigue behavior of basalt fiber reinforced epoxy polymer (BFRP) composites and reveals the degradation mechanism of BFRP under different stress levels of cyclic loadings. The BFRP composites were tested under tension-tension fatigue load with different stress levels by an advanced fatigue loading equipment combined with in-situ scanning electron microscopy (SEM). The specimens were under long-term cyclic loads up to 1 × 10~7 cycles. The stiffness degradation, S-N curves and the residual strength of run-out specimens were recorded during the test. The fatigue strength was predicted with the testing results using reliability methods. Meanwhile, the damage propagation and fracture surface of all specimens were observed and tracked during fatigue loading by an in-situ SEM, based on which damage mechanism under different stress levels was studied. The results show the prediction of fatigue strength by fitting S-N data up to 2 × 10~6 cycles is lower than that of the data by 1 × 10~7 cycles. It reveals the fatigue strength perdition is highly associated with the long-term run-out cycles and traditional two million run-out cycles cannot accurately predict fatigue behavior. The SEM images reveal that under high level of stress, the critical fiber breaking failure is the dominant damage, while the matrix cracking and interfacial debonding are main damage patterns at the low and middle fatigue stress level for BFRP. Based on the above fatigue behavior and damage pattern, a three stage fracture mechanism model under fatigue loading is developed.
机译:本文研究了玄武岩纤维增强环氧聚合物(BFRP)复合材料的疲劳行为,并揭示了BFRP在循环应力不同应力水平下的降解机理。通过先进的疲劳加载设备结合原位扫描电子显微镜(SEM)在不同应力水平下的拉伸-拉伸疲劳载荷下测试BFRP复合材料。标本承受了长期的循环载荷,最高可达1×10〜7个循环。在测试过程中记录了刚度下降,S-N曲线和跳动试样的残余强度。使用可靠性方法通过测试结果预测了疲劳强度。同时,通过疲劳原位扫描电镜观察和跟踪了疲劳载荷作用下所有试样的损伤扩展和断裂面,并研究了不同应力水平下的损伤机理。结果表明,通过拟合高达2×10〜6个周期的S-N数据对疲劳强度的预测比数据要低1×10〜7个周期的预测。它表明疲劳强度的降低与长期跳动周期密切相关,而传统的200万跳动周期无法准确预测疲劳行为。扫描电镜图像显示,在高应力下,纤维断裂的关键破坏是主要的破坏,而在中低疲劳应力水平下,基体开裂和界面剥离是主要的破坏方式。基于以上疲劳行为和损伤规律,建立了疲劳载荷作用下的三阶段断裂机理模型。

著录项

  • 来源
    《International Journal of Fatigue》 |2016年第7期|58-67|共10页
  • 作者单位

    National and Local Unified Engineering Research Center for Basalt Fiber Production and Application Technology, International Institute for Urban Systems Engineering, Southeast University, Nanjing 210096, China;

    National and Local Unified Engineering Research Center for Basalt Fiber Production and Application Technology, International Institute for Urban Systems Engineering, Southeast University, Nanjing 210096, China ,Key Laboratory of C & PC Structures Ministry of Education, Southeast University, Nanjing 210096, China;

    National and Local Unified Engineering Research Center for Basalt Fiber Production and Application Technology, International Institute for Urban Systems Engineering, Southeast University, Nanjing 210096, China ,Key Laboratory of C & PC Structures Ministry of Education, Southeast University, Nanjing 210096, China;

    Composites Division, Jiangsu Green Materials Valley New Material T&D Co., Ltd, Nanjing 210019, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Basalt fiber; SEM; Fatigue; Damage mechanism;

    机译:玄武岩纤维;扫描电镜疲劳;破坏机理;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号