...
首页> 外文期刊>International Journal of Fatigue >Competitive cracking behavior and microscopic mechanism of Ni-based superalloy blade respecting accelerated CCF failure
【24h】

Competitive cracking behavior and microscopic mechanism of Ni-based superalloy blade respecting accelerated CCF failure

机译:基于Ni的高温合金叶片的竞争性开裂行为和微观机理,各自加速CCF衰竭

获取原文
获取原文并翻译 | 示例

摘要

The cracking behavior and microscopic mechanism of K403 superalloy turbine blade are investigated respecting the Combined high and low Cycle Fatigue (CCF) with four acceleration states. It concludes that: (1) the crack initiation sites transform from slip planes inside alloy matrix to subsurface pores and carbides, then to oxides outside surface with increasing loads; (2) the behavior in (1) is attributed to the competition and alliance of different microstructural factors and the interaction of the factors with grain boundaries; (3) hereinto, the role shift of high cycle fatigue in CCF causes the transformation of transgranular to intergranular cracking mode.
机译:C403超合金涡轮叶片的裂化行为和微观机理研究了四个加速状态的综合高和低循环疲劳(CCF)。 结论:(1)(1)裂纹启动位点从合金基质内的滑坡转换为地下孔和碳化物,然后以载荷增加氧化物; (2)(1)中的行为归因于不同微观结构因素的竞争和联盟以及谷物边界的因素的相互作用; (3)详细说明,CCF中高循环疲劳的角色转变导致跨晶转化为晶间裂化模式。

著录项

  • 来源
    《International Journal of Fatigue 》 |2021年第9期| 106306.1-106306.12| 共12页
  • 作者单位

    Department of Aeronautics and Astronautics Fudan University Shanghai 200433 PR China;

    School of Aeronautics Science and Engineering Beihang University Beijing 100191 PR China;

    China Ship Development and Design Center Wuhan 430064 PR China;

    Department of Aeronautics and Astronautics Fudan University Shanghai 200433 PR China;

    Department of Aeronautics and Astronautics Fudan University Shanghai 200433 PR China;

    Department of Aeronautics and Astronautics Fudan University Shanghai 200433 PR China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Turbine blade; Combined high and low cycle fatigue; Crack mode; Microstructural feature; Damage mechanism;

    机译:涡轮叶片;结合高和低循环疲劳;裂缝模式;微观结构;损坏机制;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号