...
首页> 外文期刊>International Journal of Fatigue >Modeling fatigue life of composite laminates: A statistical micro-mechanics approach
【24h】

Modeling fatigue life of composite laminates: A statistical micro-mechanics approach

机译:模拟复合材料层压板的疲劳寿命:统计微力学方法

获取原文
获取原文并翻译 | 示例

摘要

Modeling the stiffness degradation associated with intra-laminar damage is an essential aspect of many fatigue models for laminated polymer matrix composites. The present paper therefore investigates the effect of intra-laminar micro-cracks on the effective stiffness of unidirectional plies. Following a brief review of the damage mechanisms observed in laminates under fatigue loading as well as current approaches for fatigue modeling, a Monte-Carlo algorithm is employed to generate random arrangements of unidirectional carbon fibers embedded in a polymer matrix. The cross sections of these geometries are tessellated by means of Voronoi-cells and De/aunay-triangles to create potential crack paths and meshed using finite volume elements. The finite element models are then subjected to cyclic transverse strain via periodic boundary conditions. A multi-axial fatigue life criterion formulated on the micro-scale is used to model the damage process of the material in a simplified manner. For each simulated state, the effective stiffness properties of the composite are determined. Material behavior is then statistically analyzed for samples of random fiber arrangements containing different numbers of fibers. In general, the effective material behavior is monoclinic showing coupling between out of plane shear and transverse normal deformation. In the initial undamaged state, some but not all engineering stiffness parameters can be assumed to follow a normal distribution. As expected, a statistical size effect on the fatigue life to crack initiation can be demonstrated. For increasing severity of the simulated damage, a linear correlation is observed between most of the primary engineering stiffness parameters such as the elastic and shear moduli while this is not the case for many of the normal-shear coupling parameters.
机译:与层内损伤相关的刚度退化建模是层压聚合物基复合材料许多疲劳模型的重要方面。因此,本文研究了层内微裂纹对单向层的有效刚度的影响。在简要回顾了层压板在疲劳载荷下观察到的损伤机理以及疲劳建模的当前方法之后,采用了蒙特卡洛算法来生成嵌入聚合物基体中的单向碳纤维的随机排列。这些几何形状的横截面通过Voronoi单元和De / aunay三角形进行细分,以创建潜在的裂纹路径并使用有限体积元素进行网格划分。然后,通过周期性边界条件使有限元模型经受循环横向应变。在微尺度上制定的多轴疲劳寿命准则用于以简化的方式对材料的损伤过程进行建模。对于每个模拟状态,确定复合材料的有效刚度属性。然后对包含不同数量纤维的随机纤维排列的样品的材料行为进行统计分析。通常,有效的材料行为是单斜的,显示出平面外剪切力和横向法向变形之间的耦合。在初始未损坏状态下,可以假定某些而非全部工程刚度参数遵循正态分布。如预期的那样,可以证明统计尺寸对裂纹萌生疲劳寿命的影响。为了增加模拟损伤的严重性,可以在大多数主要工程刚度参数(例如弹性模量和剪切模量)之间观察到线性相关性,而对于许多法向剪力耦合参数却并非如此。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号