首页> 外文期刊>International journal of design & nature and ecodynamics >DESIGN SYNTHESES AND ANALYSES OF A LAB ON A CHIP (LOC) MODULE BASED ON BIOLOGICAL CELL REQUIREMENTS IN NATURE
【24h】

DESIGN SYNTHESES AND ANALYSES OF A LAB ON A CHIP (LOC) MODULE BASED ON BIOLOGICAL CELL REQUIREMENTS IN NATURE

机译:基于自然界中生物细胞需求的芯片(LOC)模块上实验室的设计合成和分析

获取原文
获取原文并翻译 | 示例
       

摘要

It is of a growing interest among researchers in the biotechnology field to acquire a reliable system that maintains the viability of a cell in an in vitro environment for a sufficient period of time, and provides multi-task analyses on a mammalian cell. Therefore, the Lab-on-a Chip (LoC) field has been initiated to address such needs. The objectives of this work are (1) to provide a review on how nature defines the design requirements of a miniaturized system for cell viability - mimicking that of an in vivo domain, as well as extracting cellular electrophysiology at a molecular level, and (2) to translate such requirements into an engineering application of design synthesis and analyses of two main integrated components of an LoC platform: microfluidic (uF), and Multi-Electrode-Array (MEA) systems. As a result, this work highlights the optimal environment of a cell to live and grow for bioresearch by acquiring an engineered system of nutrition supply and removal of wastes (perfusion), pH neutralization, sufficient supply of oxygen, thermal stability, elimination of air pockets, and a presence of a highly salted aqueous solution. On the essence of cellular nature and design interrelation, the results of the Computational Fluid Dynamic (CFD) analyses visualize and predict flow characteristics, investigate the optimization process of having a uniform flow pattern (uniform nutrition distribution), elimination of air pockets for cell within the microfluidic module, and arriving at a stable system in terms of controllability and durability. Similarly, the MEA's empirical analyses define an optimal pitch distance between two neighbouring electrodes that would-visualize and arrive at a uniform current density distribution, allowing sufficient space for cell-line growth. In conclusion, the biology principles should be comprehended prior to modelling, design, and microfabrication of a LoC, to place such module as a valuable tool for bio-experimentalists.
机译:在生物技术领域中,研究人员越来越需要获得一种可靠的系统,该系统可以在体外环境中维持细胞足够长的生存时间,并提供对哺乳动物细胞的多任务分析。因此,已经启动了芯片实验室(LoC)字段来满足此类需求。这项工作的目标是(1)对自然界如何定义小型化系统对细胞生存力的设计要求进行审查-模仿体内结构域的设计要求,以及从分子水平提取细胞电生理学,以及(2 ),以将这些需求转化为设计综合的工程应用,以及对LoC平台的两个主要集成组件的分析:微流体(uF)和多电极阵列(MEA)系统。结果,这项工作通过获取营养供应和废物去除(灌注),pH中和,充足的氧气供应,热稳定性,消除气穴的工程系统,突出了生物研究中细胞生存和生长的最佳环境。 ,以及盐分高的水溶液的存在。基于细胞本质和设计相互关系的本质,计算流体动力学(CFD)的结果可以可视化并预测流动特性,研究具有均匀流动模式(营养分布均匀),消除内部气泡的优化过程微流体模块,并在可控性和耐用性方面达到稳定的系统。同样,MEA的经验分析确定了两个相邻电极之间的最佳间距,该间距将可视化并达到均匀的电流密度分布,从而为细胞系生长留出了足够的空间。总之,在对LoC进行建模,设计和微制造之前,应先了解生物学原理,以将这样的模块作为对生物实验人员有用的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号