...
首页> 外文期刊>International Journal of Control, Automation and Systems >An adaptive fuzzy sliding-mode controller design for walking control with functional electrical stimulation: A computer simulation study
【24h】

An adaptive fuzzy sliding-mode controller design for walking control with functional electrical stimulation: A computer simulation study

机译:具有功能性电刺激的步行控制的自适应模糊滑模控制器设计:计算机仿真研究

获取原文
获取原文并翻译 | 示例
           

摘要

A major challenge to developing neuroprostheses for walking and to widespread acceptance of these walking systems is the design of a robust control strategy that provides satisfactory tracking performance, to be robust against time-varying properties of neuromusculoskeletal dynamics, day-today variations, muscle fatigue, and external disturbances, and to be easy to apply without requiring offline identification during different experiment sessions. The lower extremities of human walking are a highly nonlinear, highly time-varying, multi-actuator, multi-segment with highly inter-segment coupling, and inherently unstable system. Moreover, there always exist severe structured and unstructured uncertainties such as spasticity, muscle fatigue, external disturbances, and unmodeled dynamics. Robust control design for such nonlinear uncertain multi-input multi-output system still remains as an open problem. In this paper we present a novel robust control strategy that is based on combination of adaptive fuzzy control with a new well-defined sliding-mode control (SMC) with strong reachability for control of walking in paraplegic subjects. Based on the universal approximation theorem, fuzzy logic systems are employed to approximate the neuromusculoskeletal dynamics and an adaptive fuzzy controller is designed by using Lyapunov stability theory to compensate for approximation errors. The proposed control strategy has been evaluated on a planar model of bipedal locomotion as a virtual patient. The results indicate that the proposed strategy provides accurate tracking control with fast convergence during different conditions of operation, and could generate control signals to compensate the effects of muscle fatigue, system parameter variations, and external disturbances. Interesting observation is that the controller generates muscle excitation that mimic those observed during normal walking.
机译:开发用于行走的神经假体并获得这些行走系统的广泛接受的主要挑战是设计一种鲁棒的控制策略,该策略可提供令人满意的跟踪性能,以抵抗神经肌肉骨骼动力学的时变特性,日常变化,肌肉疲劳,和外部干扰,并且易于应用,而无需在不同的实验阶段进行离线识别。人类步行的下肢是一个高度非线性,高度时变的多执行器,具有高段间耦合的多段以及固有的不稳定系统。而且,总是存在严重的结构化和非结构化不确定性,例如痉挛,肌肉疲劳,外部干扰和无模型的动力学。这种非线性不确定多输入多输出系统的鲁棒控制设计仍然是一个悬而未决的问题。在本文中,我们提出了一种新颖的鲁棒控制策略,该策略基于自适应模糊控制与新的定义明确的滑模控制(SMC)的结合,该功能具有很强的可达性,可用于截瘫患者的步行控制。基于通用逼近定理,采用模糊逻辑系统对神经肌肉骨骼动力学进行逼近,并利用Lyapunov稳定性理论设计自适应模糊控制器来补偿逼近误差。拟议的控制策略已在作为虚拟患者的双足运动平面模型上进行了评估。结果表明,所提出的策略提供了在不同操作条件下具有快速收敛性的精确跟踪控制,并且可以生成控制信号来补偿肌肉疲劳,系统参数变化和外部干扰的影响。有趣的观察是,控制器产生的肌肉兴奋模仿正常行走过程中观察到的肌肉兴奋。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号