首页> 外文期刊>International journal of communication systems >Channel characterization of EM waves propagation at MHz frequency through seawater
【24h】

Channel characterization of EM waves propagation at MHz frequency through seawater

机译:通过MHz传播的以MHz频率传播的EM波的信道表征

获取原文
获取原文并翻译 | 示例
           

摘要

Electromagnetic (EM) communication is considered as a suitable physical layer choice for SeaWater. SeaWater EM communication presents advantages over acoustic and optical in shallow water and deep oceans. Theoretical analysis of EM wave propagation in SeaWater helps us to estimate maximum distance covered in SeaWater at multiple depth points up to 5500 m. Mathematics of EM propagation in SeaWater (conducting medium) shows dependence on f (Hz), is an element of (F/m), and sigma(S/m) of transmission medium. This paper presents channel characteristics of EM waves propagation at 1 to 20 MHz frequency through SeaWater based on real time data of SeaWater T(C degrees) and S(ppt) for averaged decades from 1955 to 2012 up to 5500 m. We estimated SeaWater sigma(S/m), is an element of(r) (F/m) (using Stogryns model), alpha (Np/m) (using Helmholtz model), Z(ohms), f(T)(Hz), v(p)(m/second), tau(second), and P-r(dBm) (using Maxwell equations and Friis law). Analysis of these parameters against multiple depths of SeaWater and frequencies shows that we can not assume constant sigma(S/m) (4), is an element of(r)(F/m) (81), f(T)(Hz) (888 MHz),v(p)(m/second) (3.3*10(7)), and tau(second) (8.2*10(-12)) for SeaWater. Estimated P-r(dBm) helped us to analyze that for lower transmission frequencies (means higher is an element of r) and for lower sigma(S/m), P-r(dBm) decays linearly. While for higher frequencies (means lower is an element of r) and for higher sigma(S/m), P-r(dBm) faces sudden exponential decay. That negates sudden exponential delay (in general) of P-r(dBm) in SeaWater; it was only possible by assuming constant SeaWater is an element of(r) (F/m) and sigma(S/m). Our paper illustrates radio frequency communication for SeaWater in 1 to 20 MHz range and also provides comprehensive performance analysis using MATLAB simulation tool.
机译:电磁(EM)通信被认为是海水的合适物理层选择。海水EM通信在浅水和深海中比声学和光学技术具有优势。对海水中电磁波传播的理论分析有助于我们估算海水中最大深度为5500 m的海水覆盖的最大距离。 EM在海水(导电介质)中传播的数学模型显示出对f(Hz)的依赖性,它是(F / m)的元素,并且是传输介质的sigma(S / m)。本文根据1955年至2012年平均几十年(直到5500 m)的海水T(C度)和S(ppt)的实时数据,介绍了以1至20 MHz频率通过海水传播的EM波的信道特征。我们估计海水sigma(S / m)是(r)(F / m)(使用Stogryns模型),alpha(Np / m)(使用Helmholtz模型),Z(ohms),f(T)( Hz),v(p)(m / second),tau(秒)和Pr(dBm)(使用麦克斯韦方程和弗里斯定律)。针对海水的多个深度和频率对这些参数的分析表明,我们不能假设常数sigma(S / m)(4),是(r)(F / m)(81),f(T)(Hz)的元素)(888 MHz),v(p)(m / second)(3.3 * 10(7))和tau(second)(8.2 * 10(-12))用于海水。估计的P-r(dBm)有助于我们分析,对于较低的传输频率(意味着较高是r的一个元素),对于较低的sigma(S / m),P-r(dBm)线性衰减。对于较高的频率(意味着较低是r的元素),对于较高的sigma(S / m),P-r(dBm)面临突然的指数衰减。消除了海水中P-r(dBm)的突然指数延迟(通常);只有假设恒定的海水是(r)(F / m)和sigma(S / m)的元素,才有可能。本文说明了1至20 MHz范围内海水的射频通信,并使用MATLAB仿真工具提供了全面的性能分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号