首页> 外文期刊>International journal of applied ceramic technology >Materials Challenges in Reverse-Flow Pyrolysis Reactors for Petrochemical Applications
【24h】

Materials Challenges in Reverse-Flow Pyrolysis Reactors for Petrochemical Applications

机译:石油化工应用逆流热解反应器中的材料挑战

获取原文
获取原文并翻译 | 示例
           

摘要

Currently, the pyrolysis of hydrocarbons for the production of light olefins is almost exclusively carried out in steam crackers operating around 900-1000℃. However, cracking hydrocarbons at much higher temperature results in high selectivity to acetylene, which can be converted into many petrochemical products including ethylene. The desired hydropyrolysis reaction from hydrocarbons to acetylene can be realized in a reverse-flow reactor at very high temperatures (>1700℃) in a scalable manner. The reactor elements include ceramic components that are placed in the hottest regions of the reactor and must withstand a temperature that is in the range of 1500-2000℃. In addition, the temperature rises and falls with the reverse-flow cycle; a fluctuation that could be as high as 100-500℃ over a period of several seconds. Moreover, the materials in the hot zone are exposed alternately to a regeneration (heat addition) step that is mildly oxidizing, and a pyrolysis (cracking) step that is strongly reducing with a correspondingly high carbon activity. This article addresses the thermodynamic stability of selected ceramic materials based on alumina, zirconia, and yttria for such an application. Results from laboratory tests involving the exposure of these ceramic materials to simulated process conditions followed by their microstructural characterization are compared with expectations from thermodynamic predictions.
机译:当前,烃的热解以生产轻质烯烃几乎完全在约900-1000℃的蒸汽裂化器中进行。但是,在高得多的温度下裂解烃会导致对乙炔的高选择性,乙炔可转化为许多石油化工产品,包括乙烯。从烃类到乙炔的所需加氢热解反应可以在回流反应器中以很高的温度(> 1700℃)以可扩展的方式实现。反应堆元件包括放置在反应堆最热区域中的陶瓷组件,并且必须承受1500-2000℃的温度。另外,温度随着逆流循环而上升和下降。在几秒钟的时间内波动可能高达100-500℃。此外,将热区中的材料交替地暴露于温和氧化的再生(添加热量)步骤和强烈还原的热解(裂解)步骤,并相应地具有较高的碳活性。本文介绍了针对此类应用的选定的基于氧化铝,氧化锆和氧化钇的陶瓷材料的热力学稳定性。将涉及这些陶瓷材料暴露于模拟工艺条件并随后对其微观结构进行表征的实验室测试结果与热力学预测的预期结果进行比较。

著录项

  • 来源
  • 作者单位

    ExxonMobil Corporate Strategic Research, Annandale, New Jersey 08801;

    ExxonMobil Corporate Strategic Research, Annandale, New Jersey 08801;

    ExxonMobil Corporate Strategic Research, Annandale, New Jersey 08801;

    ExxonMobil Chemical Companry, Baytown, Texas 77522;

    ExxonMobil Chemical Companry, Baytown, Texas 77522;

    Frick Chemistry Laboratory, Princeton University, Princeton, New Jersey 08544;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号