首页> 外文期刊>Materials and Corrosion >Materials challenges in cyclic carburizing and oxidizing environments for petrochemical applications
【24h】

Materials challenges in cyclic carburizing and oxidizing environments for petrochemical applications

机译:石化应用中循环渗碳和氧化环境中的材料挑战

获取原文
获取原文并翻译 | 示例
           

摘要

Steam cracking is a petrochemical process that cleaves a broad range of hydrocarbon feed molecules into a variety of light olefinic products, including the highly desirable ethylene. Over the course of a cracking operation using a feed mixture of a saturated hydrocarbon and steam around 900-1000℃ in tubular alloy coils located in fired heaters, coke inevitably forms on the inside surfaces of the furnace tubes and must be burned off and/or spalled off periodically using steam or a steam-air mixture. Furnace tube materials are predominantly based on chromia-forming alloys; such alloys can degrade by carburization and oxide-carbide conversion in such a mixed carburizing- oxidizing environment. These hurdles have been largely overcome by using an alumina-forming material that provides superior corrosion and coking resistance. Cracking hydrocarbons at much higher temperatures results in high selectivity to acetylene, which can be converted into many petrochemical products including ethylene. The desired hydropyrolysis reaction from hydrocarbons to acetylene can be realized in a reverse-flow reactor operating above 1500℃ in a scaleable manner. The reactor elements include ceramic components that are placed in the hottest regions of the reactor, and must withstand temperatures in the range of 1500-2000℃. Moreover, the materials in the hot zone are exposed alternately to a regeneration (heat addition) step that is mildly oxidizing and a pyrolysis (cracking) step that is strongly reducing with a correspondingly high carbon activity. This paper addresses the thermodynamic stability of selected ceramic materials based on alumina, zirconia, and yttria for such an application. Results from laboratory tests involving the exposure of these ceramic materials to simulated process conditions followed by their microstructural characterization are compared with expectations from thermodynamic predictions.
机译:蒸汽裂化是一种石油化学过程,可将多种烃类进料分子裂解成各种轻质烯烃产物,包括非常理想的乙烯。在位于燃烧加热器中的管状合金盘管中,使用饱和烃和约900-1000℃左右的蒸汽进料混合物进行裂化操作的过程中,不可避免地会在炉管内表面形成焦炭,必须将其燃烧掉和/或将其燃烧掉。使用蒸汽或蒸汽-空气混合物定期剥落。炉管材料主要基于氧化铬形成合金。在这种混合渗碳-氧化环境中,此类合金可通过渗碳和氧化物-碳化物转化而降解。这些障碍已通过使用可提供卓越的耐腐蚀和抗焦化性能的氧化铝形成材料而得到克服。在高得多的温度下裂解烃会导致对乙炔的高选择性,乙炔可转化为许多石化产品,包括乙烯。可以从烃类转化为乙炔的所需加氢热解反应可以在1500℃以上的回流反应器中以可缩放的方式实现。反应堆元件包括放置在反应堆最热区域的陶瓷组件,并且必须承受1500-2000℃的温度。此外,将热区中的材料交替地暴露于轻度氧化的再生(添加热量)步骤和强烈还原的热解(裂解)步骤,并相应地具有较高的碳活性。本文探讨了针对此类应用的选定的基于氧化铝,氧化锆和氧化钇的陶瓷材料的热力学稳定性。将涉及这些陶瓷材料暴露于模拟工艺条件并对其微观结构进行表征的实验室测试结果与热力学预测的预期结果进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号