首页> 外文期刊>The International Journal of Advanced Manufacturing Technology >Study of fluid damping effects on resonant frequency of an electromagnetically actuated valveless micropump
【24h】

Study of fluid damping effects on resonant frequency of an electromagnetically actuated valveless micropump

机译:流体阻尼对电磁驱动无阀微型泵共振频率的影响研究

获取原文
获取原文并翻译 | 示例
           

摘要

As fluid flow effects on the actuation and dynamic response of a vibrating membrane are crucial to micropump design in drug delivery, this paper presents both a mathematical and finite-element analysis (FEA) validation of a solution to fluid damping of a valveless micropump model. To further understand the behavior of the micropump, effects of geometrical dimensions and properties of fluid on the resonant frequency are analyzed to optimize the design of the proposed micropump. The analytical and numerical solutions show that the resonant frequency decreases with the slenderness ratio of the diffuser and increases with the opening angle, high aspect ratio, and thickness ratio between the membrane and the fluid chamber depth. A specific valveless micropump model with a 6-mm diameter and 65-μm thickness polydimethylsiloxane (PDMS) composite elastic membrane was studied and analyzed when subjected to different fluids conditions. The resonant frequency of a clamped circular membrane is found to be 138.11 Hz, neglecting the fluid. For a gas fluid load, the frequency is attenuated by slightly shifting to 104.76 Hz and it is significantly reduced to 5.53 Hz when the liquid fluid is loaded. Resonant frequency remarkably shifts the flow rate of the pump; hence, frequency-dependent characteristics of both single-chamber and dual-chamber configuration micropumps were investigated. It was observed that, although the fluid capacity is doubled for the latter, the maximum flow rate was found to be around 27.73 μl/min under 0.4-A input current with an excitation frequency of 3 Hz. This is less than twice the flow rate of a single chamber of 19.61 μl/min tested under the same current but with an excitation frequency of 4.36 Hz. The proposed double-chamber model analytical solution combined with the optimization of the nozzle/diffuser design and assuming the effects of damping proved to be an effective tool in predicting micropump performance and flow rate delivery.
机译:由于流体流动对振动膜的驱动和动态响应的影响对于药物输送中的微型泵设计至关重要,因此本文介绍了无阀微型泵模型的流体阻尼解决方案的数学和有限元分析(FEA)验证。为了进一步了解微型泵的行为,分析了几何尺寸和流体特性对共振频率的影响,以优化所提出的微型泵的设计。解析解和数值解表明,共振频率随着扩散器的细长比而减小,并且随着膜片与流体腔深度之间的开度角,高纵横比和厚度比而增加。研究并分析了一种特殊的无阀微型泵模型,该模型具有6毫米直径和65微米厚度的聚二甲基硅氧烷(PDMS)复合弹性膜,并在不同的流体条件下进行了分析。发现被夹紧的圆形膜的共振频率为138.11 Hz,而忽略了流体。对于气体流体负载,通过稍微移至104.76 Hz,频率会衰减,并且在加载液体流体时,频率会明显降低至5.53 Hz。共振频率显着改变了泵的流量;因此,研究了单腔和双腔配置微型泵的频率相关特性。观察到,尽管后者的流体容量增加了一倍,但发现在0.4A输入电流和3Hz激励频率下,最大流速约为27.73μl/ min。这小于在相同电流但激发频率为4.36 Hz的条件下测试的单个腔室的流速19.61μl/ min的两倍。所提出的双室模型分析解决方案与喷嘴/扩散器设计的优化相结合,并假设阻尼效应被证明是预测微泵性能和流量输送的有效工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号