...
首页> 外文期刊>International Communications in Heat and Mass Transfer >The effects of external force and electrical field on the agglomeration of Fe_3O_4 nanoparticles in electroosmotic flows in microchannels using molecular dynamics simulation
【24h】

The effects of external force and electrical field on the agglomeration of Fe_3O_4 nanoparticles in electroosmotic flows in microchannels using molecular dynamics simulation

机译:用分子动力学模拟在微通道中微型通道电流流动中Fe_3O_4纳米粒子凝聚的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Recent progress in nanoparticle construction can be seen as a breakthrough in increasing heat transfer methods. The small size of particles and low volume fraction of particles leads to solving agglomeration and pressure drop problems and reduce the cost of storing and transporting nanofluids. Molecular dynamics simulation is one of the essential branches of computational physics that can predict various structures' atomic behavior. In this study, the effects of external electrostatic force and external electrical field on the density, velocity, temperature of atomic structures, and agglomeration of Fe_3O_4 nanoparticles in a copper microchannel are investigated. The results of the physical properties of this structure are estimated using molecular dynamics simulation and LAMMPS software. The results show that with increasing the applied external electrostatic force the maximum velocity is converged to 0.0071 A /ps. Also, adding an external electrical field to the simulated nanofluid, the maximum values of density, velocity, and temperature are estimated to 1.32 g/cm~3, 0.0078 A /ps, and 345 K, respectively. The external electrical field has a significant and essential role in the agglomeration process in atomic structures. Finally, it is observed that by increasing the external electrical field, the time required for the agglomeration process increases to 2.26 ns.
机译:纳米粒子结构的最近进展可以被视为增加传热方法的突破。小尺寸的颗粒和低体积分数的颗粒导致求解附聚和压降问题,并降低纳米流体的储存和运输成本。分子动力学模拟是可以预测各种结构原子行为的计算物理学的必要分支之一。在该研究中,研究了外部静电力和外部电场对铜微通道中Fe_3O_4纳米颗粒的密度,速度,温度的浓度,速度,温度,以及Fe_3O_4纳米颗粒的凝聚。使用分子动力学仿真和LAMMPS软件估计该结构的物理性质的结果。结果表明,随着施加的外部静电力的增加,最大速度会融合到0.0071A / ps。而且,将外部电场添加到模拟的纳米流体中,密度,速度和温度的最大值分别估计为1.32g / cm〜3,00078a / ps和345 k。外部电场在原子结构中的聚集过程中具有显着且重要的作用。最后,观察到,通过增加外部电场,附聚过程所需的时间增加到2.26ns。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号