首页> 外文期刊>International communications in heat and mass transfer >Effect of rotating solid cylinder on entropy generation and convective heat transfer in a wavy porous cavity heated from below
【24h】

Effect of rotating solid cylinder on entropy generation and convective heat transfer in a wavy porous cavity heated from below

机译:旋转固体圆柱体对从下方加热的波浪状多孔腔中熵产生和对流传热的影响

获取原文
获取原文并翻译 | 示例
       

摘要

The aim of the present study is to analyze the entropy generation and convective heat transfer in a bottom-heated wavy porous cavity containing a solid rotating cylinder. An isothermal heater of length h is placed on the bottom wall of the cavity, while both the left and right vertical wavy walls are maintained at a constant cold temperature T-c. The remainder parts of the bottom wall and the top wall are kept adiabatic. The Forchheimer-Brinkman-extended Darcy model is assumed to hold. The dimensionless governing equations subject to the selective boundary conditions are solved numerically using the Galerkin weighted residual finite element method. The governing parameters of this study are the Rayleigh number (Ra = 10(5) and 10(6)), angular rotational velocity (- 1000 = Omega = 1000), Darcy number (10(-6) = Da = 10(-2)), number of oscillations (1 = N = 4) and porosity of the medium (0.2 = epsilon = 0.8). The developed computational code is validated comprehensively using the grid independence test and numerical data of other authors. The obtained results reveal that the flow control can be accomplished by the angular rotational velocity or direction of the cylinder rotation, which have important design implications in practical applications. In addition, an augmenting in the porosity of the medium causes an increase in heat transfer from the wall to the fluid and therefore an increase in the convective flow and consequently a decrease in the Bejan number.
机译:本研究的目的是分析包含固体旋转圆柱体的底部加热的波浪形多孔腔中的熵产生和对流传热。长度为h的等温加热器放置在型腔的底壁上,而左右垂直波浪形壁均保持在恒定的低温T-c下。底壁和顶壁的其余部分保持绝热。假定持有Forchheimer-Brinkman扩展的Darcy模型。使用Galerkin加权残差有限元方法,对受选择边界条件约束的无量纲控制方程进行了数值求解。这项研究的控制参数是瑞利数(Ra = 10(5)和10(6)),角旋转速度(-1000 <= Omega <= 1000),达西数(10(-6)<= Da < = 10(-2)),振荡次数(1 <= N <= 4)和介质的孔隙率(0.2 <= epsilon <= 0.8)。使用网格独立性测试和其他作者的数值数据来全面验证所开发的计算代码。获得的结果表明,可以通过角旋转速度或气缸旋转方向来实现流量控制,这在实际应用中具有重要的设计意义。另外,介质孔隙率的增加导致从壁到流体的热传递增加,因此对流流动增加,因此贝扬数减小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号