首页> 外文期刊>Integration >An efficient and high-speed VLSI implementation of optimal normal basis multiplication over GF(2(m))
【24h】

An efficient and high-speed VLSI implementation of optimal normal basis multiplication over GF(2(m))

机译:GF(2(m))上最优正态基础乘法的高效高速VLSI实现

获取原文
获取原文并翻译 | 示例
           

摘要

Finite field multiplication is one of the most important operations in the finite field arithmetic and the main and determining building block in terms of overall speed and area in public key cryptosystems. In this work, an efficient and high-speed VLSI implementation of the bit-serial, digit-serial and bit-parallel optimal normal basis multipliers with parallel-input serial-output (PISO) and parallel-input parallel output (PIPO) structures are presented. Two general multipliers, namely, Massey-Omura (MO) and Reyhani Masoleh-Hassan (RMH) are considered as case study for implementation. These multipliers are constructed by using AND, XOR-AND and XOR tree components. In the MO multiplier, to have strong input signals and have a better implementation, the row of AND gates are implemented by using inverter and NOR components. Also the XOR-AND component in the RMH structure is implemented using a new low-cost structure. The XOR tree in both multipliers consists of a high number of logic stages and many inputs; therefore, to optimally decrease the delay and increase the drive ability of the circuit for different loads, the logical effort method is employed as an efficient method for sizing the transistors. The multipliers are first designed for different load capacitances using different structures and different number of stages. Then using the logical effort method and a new proposed 4-input XOR gate structure, the circuits are modified for acquiring minimum delay. Using 0.18 pm CMOS technology, the bit-serial, digit serial and bit-parallel structures with type-1 and type-2 optimal normal basis are implemented over the finite fields GF(2(226)) and GF(2(233)) respectively. The results show that the proposed structures have better delay and area characteristics compared to previous designs. (C) 2016 Elsevier B.V. All rights reserved.
机译:有限域乘法是有限域算术中最重要的运算之一,并且是公钥密码系统中总体速度和面积的主要决定因素。在这项工作中,高效,高速的VLSI实现是具有并行输入串行输出(PISO)和并行输入并行输出(PIPO)结构的位串行,数字串行和位并行最佳法向基乘数。提出了。两个通用乘数,即Massey-Omura(MO)和Reyhani Masoleh-Hassan(RMH)被视为实施案例研究。这些乘数是通过使用AND,XOR-AND和XOR树组件来构造的。在MO乘法器中,为了具有强大的输入信号并具有更好的实现,通过使用反相器和NOR组件来实现AND门的行。同样,RMH结构中的XOR-AND组件也使用新的低成本结构实现。两个乘法器中的“异或”树由大量逻辑级和许多输入组成。因此,为了最佳地减小延迟并增加电路在不同负载下的驱动能力,采用逻辑努力方法作为确定晶体管尺寸的有效方法。首先使用不同的结构和不同的级数为不同的负载电容设计乘法器。然后,使用逻辑努力方法和新提出的4输入XOR门结构,对电路进行修改以获取最小延迟。使用0.18 pm CMOS技术,在有限域GF(2(226))和GF(2(233))上实现具有类型1和类型2最佳法向的位串行,数字串行和位并行结构分别。结果表明,与以前的设计相比,所提出的结构具有更好的延迟和面积特性。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号