...
首页> 外文期刊>IEICE Transactions on Electronics >Determination of Small-Signal Parameters and Noise Figures of MESFET's by Physics-Based Circuit Simulator Employing Monte Carlo Technique
【24h】

Determination of Small-Signal Parameters and Noise Figures of MESFET's by Physics-Based Circuit Simulator Employing Monte Carlo Technique

机译:利用蒙特卡洛技术的基于物理的电路模拟器确定MESFET的小信号参数和噪声系数

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We present a physics-based circuit simulator employing the Monte Carlo (MC) particle technique, which serves as a bridge between the small-device physics and the circuit designs. Two different geometries of GaAs-MESFET's are modeled and analyzed by the simulator. The Y-parameters of the devices are extracted from the transient currents, and then translated into the S-parameters. The cut-off frequency (f_T) is estimated from the Y-parameters. The minimum noise figure (F_(min)) is also estimated by evaluating the fluctuation in the stationary current. The device, having the n~+-region placed just at the drain side of the gate, exhibits the better performances in both f_T and F_(min). The analysis on the equivalent circuit (EC) elements reveals that its better performances are mainly due to the reduced gate-source capacitance (C_(gs)) and the increased transcon-ductance (g_(m0)), which result from the shortened effective gate length (L_g) caused by the termination of the depletion region at the gate. edge. The termination of the depletion region, however, causes the increase of the electric field, which results in the higher heat generation rate near the gate edge. It is proven that the physics-based circuit simulator developed here is fully effective to see the inside of the small-device and to model it for the millimeter-wave circuit design.
机译:我们提出了一种基于物理的电路模拟器,该电路模拟器采用了蒙特卡洛(MC)粒子技术,该电路模拟器充当了小型设备物理与电路设计之间的桥梁。 GaAs-MESFET的两种不同几何形状通过模拟器进行建模和分析。从瞬态电流中提取设备的Y参数,然后将其转换为S参数。截止频率(f_T)是根据Y参数估算的。最小噪声系数(F_(min))也可以通过评估固定电流的波动来估算。仅在栅极的漏极侧放置n〜+区域的器件在f_T和F_(min)方面都表现出更好的性能。对等效电路(EC)元件的分析表明,其更好的性能主要归因于栅极-源极电容(C_(gs))的减少和跨导(g_(m0))的增加,这是由于有效期缩短所致由耗尽区在栅极处终止引起的栅极长度(L_g)。边缘。然而,耗尽区的终止导致电场的增加,这导致栅极边缘附近的更高的发热速率。事实证明,这里开发的基于物理的电路模拟器可以完全有效地看到小型设备的内部,并为毫米波电路设计建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号