首页> 外文期刊>IEEE Transactions on Signal Processing >Automatic Recognition of Space-Time Constellations by Learning on the Grassmann Manifold
【24h】

Automatic Recognition of Space-Time Constellations by Learning on the Grassmann Manifold

机译:通过在格拉斯曼流形上学习自动识别时空星座

获取原文
获取原文并翻译 | 示例
       

摘要

Recent breakthroughs in machine learning shift the paradigm of wireless communication towards intelligence radios. One of their core operations is automatic modulation recognition (AMR). Existing research focuses on coherent modulation schemes such as QAM and FSK. The AMR of (noncoherent) space-time modulation remains an uncharted area despite its deployment in modern multiple-input-multiple-output (MIMO) systems. The scheme using a so-called Grassmann constellation enables rate enhancement. In this paper, we propose an AMR approach for Grassmann constellation based on data clustering, which differs from traditional AMR based on classification using a modulation database. The approach allows algorithms for clustering on the Grassmann manifold (or the Grassmannian), such as Grassmann K-means and depth-first search, to be applied to AMR. We further develop an analytical framework for studying and designing these algorithms in the context of AMR. First, the expectation-maximization algorithm for Grassmann constellation detection is proved to be equivalent to clustering (K-means) on the Grassmannian for a high SNR. Thereby, a well-known machine-learning result that was originally established only for the Euclidean space is rediscovered for the Grassmannian. Next, we tackle the challenge on theoretical analysis of data clustering by introducing probabilistic metrics for measuring the inter-cluster separability and intra-cluster connectivity of received space-time symbols and deriving them using tools from differential geometry. The results provide useful insights into the effects of various parameters ranging from the signal-to-noise ratio to constellation size, facilitating algorithmic design.
机译:机器学习的最新突破将无线通信的范式向智能无线电转移。他们的核心操作之一是自动调制识别(AMR)。现有研究集中于相干调制方案,例如QAM和FSK。尽管(非相干)空时调制的AMR部署在现代的多输入多输出(MIMO)系统中,但仍是一个未知领域。使用所谓的格拉斯曼星座的方案能够提高速率。在本文中,我们提出了一种基于数据聚类的格拉斯曼星座AMR方法,该方法不同于基于调制数据库的传统AMR分类方法。该方法允许将在Grassmann流形(或Grassmannian)上聚类的算法(例如Grassmann K均值和深度优先搜索)应用于AMR。我们进一步开发了一个分析框架,用于在AMR的背景下研究和设计这些算法。首先,对于高信噪比,证明了用于Grassmann星座检测的期望最大化算法等效于Grassmannian上的聚类(K均值)。从而,为格拉斯曼式重新发现了最初只为欧几里得空间建立的众所周知的机器学习结果。接下来,我们通过引入概率度量来测量接收到的时空符号的集群间可分离性和集群内连通性,并使用差分几何中的工具来推导,从而应对数据聚类理论分析的挑战。结果为从信噪比到星座图大小等各种参数的影响提供了有用的见识,从而简化了算法设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号