...
首页> 外文期刊>Nuclear Science, IEEE Transactions on >Total Ionizing Dose (TID) Effects in Extremely Scaled Ultra-Thin Channel Nanowire (NW) Gate-All-Around (GAA) InGaAs MOSFETs
【24h】

Total Ionizing Dose (TID) Effects in Extremely Scaled Ultra-Thin Channel Nanowire (NW) Gate-All-Around (GAA) InGaAs MOSFETs

机译:超大规模超薄沟道纳米线(NW)全能栅极(GAA)InGaAs MOSFET中的总电离剂量(TID)效应

获取原文
获取原文并翻译 | 示例
           

摘要

InGaAs nanowire (NW) gate-all-around (GAA) MOSFETs exhibit superior radiation hardness compared to planar devices and FinFETs, benefitting from reduced gate-oxide electric fields. Applied gate bias during irradiation, channel thickness, and presence or absence of a forming gas anneal can strongly affect NW device radiation hardness. Low-frequency noise measurements are carried out to probe near-interfacial oxide-trap (border-trap) densities, and TCAD simulations are performed to assist in understanding the charge trapping in NW channel devices with high-k gate dielectrics. Optimized device structures exhibit high radiation tolerance.
机译:与平面器件和FinFET相比,InGaAs纳米线(NW)全方位栅极(GAA)MOSFET表现出优异的辐射硬度,这得益于降低的栅极氧化物电场。在辐照,通道厚度以及是否存在形成气体退火过程中施加的栅极偏压会严重影响NW器件的辐射硬度。进行低频噪声测量以探测近界面氧化物陷阱(边界陷阱)的密度,并执行TCAD模拟以帮助理解具有高k栅极电介质的NW沟道器件中的电荷陷阱。优化的器件结构具有很高的辐射耐受性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号