...
首页> 外文期刊>IEEE transactions on neural systems and rehabilitation engineering >Bayesian State Estimation in Sensorimotor Systems With Particle Filtering
【24h】

Bayesian State Estimation in Sensorimotor Systems With Particle Filtering

机译:具有粒子滤波的贝叶斯状态估计

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In sensorimotor control, sensory feedback integrates with forward models to alleviate the impacts of sensory noise and delay on state estimation. The sensorimotor integration is subject to Bayesian inference and has been formulated by the Kalman filter in computational neuroscience. However, the Kalman filter, as an artificial optimal estimator to address the abstract characteristics of spatial perception, is inadequate to present the neural computation in the cerebellum. Besides, the nonlinear neuromuscular dynamics with tightly coupled state variables also substantially impedes the implementation of Kalman filter in realistic sensorimotor systems. Here we address the sensorimotor state estimate by using the particle filter, a nonlinear Bayesian estimator that can be implemented in arbitrary dynamic systems with the neurocomputational compatibility. Particle filtering is explicitly implemented in a biophysically realistic sensorimotor model of an upper limb integrating Hill-type muscles, tendons, skeleton, and primary afferents. By involving the command noises, the constructed neuromusculoskeletal model qualitatively represents the experimental variability in center-out reaching movements. Despite the initial estimation uncertainty and sensorimotor noises, the particle filter is able to approximate the actual states in forward-reaching movements. Furthermore, the simulated hand-position estimate is consistent with the experimental results, in the presence of forward model errors, neural noises, and sensory delays. The particle filter is demonstrated to effectively implement the Bayesian state estimation in biophysically realistic sensorimotor systems and provide better compatibility with neuronal computation than the Kalman filter.
机译:在SensorImotor控制中,感官反馈与前向模型集成,以减轻感官噪声的影响和延迟状态估计。传感器集成受到贝叶斯推理的约束,并由卡尔曼滤波器在计算神经科学中制定。然而,作为人工最佳估计器来解决空间感知的抽象特征的卡尔曼滤波器是不充分的,以呈现小脑中的神经计算。此外,具有紧密耦合状态变量的非线性神经肌肉动态也基本上阻碍了在现实的感光镜系统中的卡尔曼滤波器的实现。在这里,我们通过使用粒子滤波器来解决SensorImotor状态估计,这是可以在具有神经计算机兼容性的任意动态系统中实现的非线性贝叶斯估计器。在整合山型肌肉,肌腱,骨架和原发性传统的上肢的生物物理学现实的感觉体模型中明确地实施颗粒滤波。通过涉及命令噪声,构建的神经肌肉骨骼模型定性地代表了中央达到运动的实验变异性。尽管初始估计不确定度和感觉电流器噪声,但粒子过滤器能够近似正常状态在前进的运动中。此外,在正向模型误差,神经噪声和感官延迟存在下,模拟的手势估计与实验结果一致。粒子滤波器被证明是有效地在生物物理上的逼真感觉体系中实现贝叶斯状态估计,并提供比卡尔曼滤波器的神经元计算更好的兼容性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号