首页> 外文期刊>Medical Imaging, IEEE Transactions on >Accuracy of Carotid Strain Estimates From Ultrasonic Wall Tracking: A Study Based on Multiphysics Simulations and In Vivo Data
【24h】

Accuracy of Carotid Strain Estimates From Ultrasonic Wall Tracking: A Study Based on Multiphysics Simulations and In Vivo Data

机译:超声壁跟踪估计颈动脉应变的准确性:基于多物理场模拟和体内数据的研究

获取原文
获取原文并翻译 | 示例
           

摘要

We used a multiphysics model to assess the accuracy of carotid strain estimates derived from a 1-D ultrasonic wall tracking algorithm. The presented tool integrates fluid-structure interaction (FSI) simulations with an ultrasound simulator (Field II), which allows comparison of the ultrasound (US) images with a ground truth. Field II represents tissue as random points on which US waves reflect and whose position can be updated based on the flow field and vessel wall deformation from FSI. We simulated the RF-signal of a patient-specific carotid bifurcation, including the blood pool as well as the vessel wall and surrounding tissue. Distension estimates were obtained from a wall tracking algorithm using tracking points at various depths within the wall, and further processed to assess radial and circumferential strain. The simulated data demonstrated that circumferential strain can be estimated with reasonable accuracy (especially for the common carotid artery and at the lumen-intima and media-adventitia interface), but the technique does not allow to reliably assess intra-arterial radial strain. These findings were supported by in vivo data of 10 healthy adults, showing similar circumferential and radial strain profiles throughout the arterial wall. We concluded that these deviations are present due to the complex 3-D vessel wall deformation, the presence of specular reflections and, to a lesser extent, the spatially varying beam profile, with the error depending on the phase in the cardiac cycle and the scanning location.
机译:我们使用多物理场模型来评估从一维超声壁跟踪算法得出的颈动脉应变估计值的准确性。所提供的工具将流体结构相互作用(FSI)模拟与超声模拟器(Field II)集成在一起,从而可以将超声(US)图像与地面真实情况进行比较。场II将组织表示为随机点,US波会在其上发生反射,并且可以根据流场和FSI产生的血管壁变形来更新其位置。我们模拟了特定于患者的颈动脉分叉的RF信号,包括血池以及血管壁和周围组织。使用壁内不同深度的跟踪点从壁跟踪算法获得膨胀估计,然后对其进行进一步处理以评估径向和周向应变。模拟数据表明,可以以合理的准确度估算周向应变(尤其是对于颈总动脉以及在内膜-内膜和中膜-外膜界面处),但是该技术无法可靠地评估动脉内径向应变。这些发现得到了10位健康成年人的体内数据的支持,显示了整个动脉壁的相似的圆周和径向应变曲线。我们得出的结论是,这些偏差是由于复杂的3D血管壁变形,镜面反射的存在以及较小程度的空间变化的光束轮廓而引起的,其误差取决于心动周期和扫描的相位位置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号