首页> 外文学位 >Accuracy and stability of transient multiphysics simulations.
【24h】

Accuracy and stability of transient multiphysics simulations.

机译:瞬态多物理场仿真的准确性和稳定性。

获取原文
获取原文并翻译 | 示例

摘要

This thesis is concerned with the development of numerical methods for unsteady fluid-structure interaction problems using loosely-coupled partitioned procedures. Partitioned procedures are routinely used in the simulation of fluid-structure interaction because of the flexibility and software modularity they offer in the choice of fluid and structural solvers and in the discretization used on both sides of the interface. However, such procedures are often criticized in the computational aeroelasticity community for their lack of accuracy and sufficient numerical stability as compared to monolithic and strongly-coupled methods. The motivation for this research work is to develop a robust, accurate and stable methods for the loosely-coupled framework.; In the first part of this dissertation, the accuracy of spatial coupling across non-matching meshes is investigated for flat and curved fluid-structure interfaces. This part analyzes two types of discretization schemes for the spatial coupling: (a) point-to-element projection schemes (e.g., node-projection, quadrature-projection) and (b) the common-refinement scheme. It is shown that the point-to-element projection schemes may yield inaccurate coupling of discrete interface conditions and hence lead to weak instabilities in the form of spurious oscillations in the coupled solutions. By constructing sub-elements and applying the least-squares minimization, the common-refinement scheme resolves this problem and yields an accurate spatial coupling of discrete interface conditions across non-matching meshes. Theoretically, the accurate coupling is shown to preserve the stability of the loosely-coupled system while maintaining energy conservation over a reference interface. This is demonstrated with the fluid-structure interaction problems of increasing complexity over flat and curved interfaces. Finally, simple analytical error indicators are introduced, which correlate well with the numerical errors of the coupling schemes.; In the second part of this dissertation, a new loosely-coupled time-stepping procedure for modeling coupled fluid-structure and thermal problems is presented. The procedure relies on a higher-order Combined Interface Boundary Condition (CIBC) treatment for improved accuracy and stability of temporal coupling. Traditionally, continuity of Dirichlet and Neumann conditions along interfaces are satisfied through algebraic interface conditions applied in a staggered fashion. It is argued that, in existing time-stepping procedures, the interface undermines stability and accuracy of coupled simulations. By utilizing the CIBC technique on the Dirichlet and Neumann boundary conditions, a staggered coupling procedure is constructed with the same order of accuracy and stability of standalone computations. The correction terms for the Dirichlet and Neumann conditions can be explicitly added to the standard staggered time-stepping stencils so that the discretization is well defined across the deformable interface. The new formulation involves a coupling parameter whose value is explicitly determined by the Godunov-Ryabenkii's stability theory for the coupled thermal problem and via numerical experiments for the fluid-structure coupling. Finally, we demonstrate the validity of analysis through a two-dimensional application involving subsonic flow over a thin-shell structure.; Although the applications considered in this thesis are of two-dimensional nature, generalization issues to three-dimensional are outlined for both spatial and temporal coupling algorithms. Finally, the proposed numerical techniques are of a general character and thus could be applied to other multiphysics problems.
机译:本文涉及使用松耦合分区程序求解非稳态流固耦合问题的数值方法。分区程序通常用于流体-结构相互作用的模拟,因为它们在选择流体和结构求解器以及在界面两侧使用离散化时提供了灵活性和软件模块化。但是,与整体和强耦合方法相比,这种方法在计算气动弹性学界经常被批评为缺乏准确性和足够的数值稳定性。这项研究工作的动机是为松耦合框架开发一个健壮,准确和稳定的方法。在本文的第一部分,研究了平面和弯曲流体结构界面在非匹配网格上的空间耦合精度。这部分分析了用于空间耦合的两种离散化方案:(a)点对单元投影方案(例如,节点投影,正交投影)和(b)公共优化方案。结果表明,点到点的投影方案可能会导致离散界面条件的耦合不准确,从而导致耦合解中的虚假振荡形式的不稳定性。通过构造子元素并应用最小二乘最小化,公共细化方案解决了此问题,并在不匹配的网格上产生了离散界面条件的精确空间耦合。从理论上讲,显示了精确的耦合可以保持松耦合系统的稳定性,同时在参考界面上保持能量节省。这通过在平面和弯曲界面上复杂性增加的流体-结构相互作用问题得到了证明。最后,介绍了简单的分析误差指标,它与耦合方案的数值误差很好地相关。在本文的第二部分,提出了一种新的松耦合时间步长模型,用于对耦合的流固和热问题进行建模。该过程依赖于更高阶的组合界面边界条件(CIBC)处理,以提高时间耦合的准确性和稳定性。传统上,Dirichlet条件和Neumann条件沿着界面的连续性是通过以交错方式应用的代数界面条件来满足的。有人认为,在现有的时间步长程序中,该接口会破坏耦合模拟的稳定性和准确性。通过在Dirichlet和Neumann边界条件上利用CIBC技术,以与独立计算相同的精度和稳定性顺序构建了交错耦合过程。可以将Dirichlet和Neumann条件的校正项显式添加到标准的交错时间步移模板中,以便在可变形界面上很好地定义离散。新的公式涉及一个耦合参数,该参数的值由Godunov-Ryabenkii的稳定性理论针对耦合热问题明确确定,并通过数值实验对流固耦合进行确定。最后,我们通过涉及薄壳结构上亚音速流的二维应用来证明分析的有效性。尽管本文考虑的应用是二维性质的,但对于空间和时间耦合算法都概述了对三维的泛化问题。最后,所提出的数值技术具有一般性,因此可以应用于其他多物理场问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号