首页> 外文期刊>Medical Imaging, IEEE Transactions on >Correction for Collimator-Detector Response in SPECT Using Point Spread Function Template
【24h】

Correction for Collimator-Detector Response in SPECT Using Point Spread Function Template

机译:使用点扩展函数模板校正SPECT中的准直检测器响应

获取原文
获取原文并翻译 | 示例
           

摘要

Compensating for the collimator-detector response (CDR) in SPECT is important for accurate quantification. The CDR consists of both a geometric response and a septal penetration and collimator scatter response. The geometric response can be modeled analytically and is often used for modeling the whole CDR if the geometric response dominates. However, for radionuclides that emit medium or high-energy photons such as I-131, the septal penetration and collimator scatter response is significant and its modeling in the CDR correction is important for accurate quantification. There are two main methods for modeling the depth-dependent CDR so as to include both the geometric response and the septal penetration and collimator scatter response. One is to fit a Gaussian plus exponential function that is rotationally invariant to the measured point source response at several source-detector distances. However, a rotationally-invariant exponential function cannot represent the star-shaped septal penetration tails in detail. Another is to perform Monte-Carlo (MC) simulations to generate the depth-dependent point spread functions (PSFs) for all necessary distances. However, MC simulations, which require careful modeling of the SPECT detector components, can be challenging and accurate results may not be available for all of the different SPECT scanners in clinics. In this paper, we propose an alternative approach to CDR modeling. We use a Gaussian function plus a 2-D B-spline PSF template and fit the model to measurements of an I-131 point source at several distances. The proposed PSF-template-based approach is nearly non-parametric, captures the characteristics of the septal penetration tails, and minimizes the difference between the fitted and measured CDR at the distances of interest. The new model is applied to I-131 SPECT reconstructions of experimental phantom measurements, a patient study, and a MC patient simulation study employing the XCAT phantom. The proposed model yi- lds up to a 16.5 and 10.8% higher recovery coefficient compared to the results with the conventional Gaussian model and the Gaussian plus exponential model, respectively.
机译:补偿SPECT中的准直检测器响应(CDR)对于精确定量很重要。 CDR由几何响应,间隔穿透和准直器散射响应组成。可以对几何响应进行分析建模,如果几何响应占优势,则通常用于对整个CDR建模。但是,对于发射中等或高能光子(例如I-131)的放射性核素,隔片穿透和准直器散射响应很重要,并且其在CDR校正中的建模对于精确定量很重要。有两种主要方法可以对深度相关的CDR进行建模,以便同时包括几何响应,隔垫穿透和准直仪散射响应。一种方法是拟合高斯加指数函数,该函数在多个源检测器距离处对于所测点源响应在旋转上不变。但是,旋转不变的指数函数不能详细表示星形的间隔穿透尾巴。另一方法是执行蒙特卡洛(MC)仿真,以生成所有必要距离的依赖深度的点扩展函数(PSF)。但是,需要对SPECT检测器组件进行仔细建模的MC模拟可能具有挑战性,并且可能无法为诊所中所有不同的SPECT扫描仪提供准确的结果。在本文中,我们提出了另一种CDR建模方法。我们使用高斯函数加上2-D B样条PSF模板,并将模型拟合到I-131点源在几个距离处的测量值。所提出的基于PSF模板的方法几乎是非参数的,可以捕获间隔穿透尾巴的特征,并在感兴趣的距离处最小化拟合和测量的CDR之间的差异。新模型将应用于实验体模测量的I-131 SPECT重建,患者研究以及使用XCAT体模的MC患者模拟研究。与传统的高斯模型和高斯加指数模型相比,所提模型的回收率分别高出16.5和10.8%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号