首页> 外文期刊>Magnetics, IEEE Transactions on >Droplet Microfluidics to Prepare Magnetic Polymer Vesicles and to Confine the Heat in Magnetic Hyperthermia
【24h】

Droplet Microfluidics to Prepare Magnetic Polymer Vesicles and to Confine the Heat in Magnetic Hyperthermia

机译:液滴微流体制备磁性聚合物囊泡并限制热疗中的热量

获取原文
获取原文并翻译 | 示例
       

摘要

In this work, we present two types of microfluidic chips involving magnetic nanoparticles dispersed in cyclohexane with oleic acid. In the first case, the hydrophobically coated nanoparticles are self-assembled with an amphiphilic diblock copolymer by a double-emulsion process in order to prepare giant magnetic vesicles (polymersomes) in one step and at a high throughput. It was shown in literature that such diblock copolymer W/O/W emulsion droplets can evolve into polymersomes made of a thin (nanometric) magnetic membrane through a dewetting transition of the oil phase from the aqueous internal cores usually leading to “acorn-like” structures (polymer excess) sticking to the membranes. To address this issue and greatly speed up the process, the solvent removal by evaporation was replaced by a “shearing-off” of the vesicles in a simple poly(dimethylsiloxane) chip designed to exert a balance between a magnetic gradient and viscous shear. In the second example, a simple oil-in-oil emulsion chip is used to obtain regular trains of magnetic droplets that circulate inside an inductor coil producing a radio-frequency magnetic field. We evidence that the heat produced by magnetic hyperthermia can be converted into a temperature rise even at the scale of nL droplets. The results are compared to heat transfer models in two limiting cases: adiabatic vs. dissipative. The aim is to decipher the delicate puzzle about the minimum size required for a tumor “phantom” to be heated by radio-frequency hyperthermia in a general scope of anticancer therapy.
机译:在这项工作中,我们介绍了两种类型的微流控芯片,它们涉及将磁性纳米颗粒分散在环己烷中与油酸一起使用。在第一种情况下,疏水涂布的纳米颗粒通过两乳化工艺与两亲性二嵌段共聚物进行自组装,以便一步一步并以高通量制备巨大的磁泡(聚合物囊泡)。从文献中可以看出,这种二嵌段共聚物W / O / W乳剂小滴可通过油相从水性内核的去湿转变而演变成由薄(纳米)磁性膜制成的聚合物囊泡,通常导致“类橡子”结构(聚合物过量)粘在膜上。为了解决这个问题并大大加快该过程,在简单的聚(二甲基硅氧烷)芯片中通过汽泡的“剪切”来代替通过蒸发去除溶剂,该芯片设计为在磁梯度和粘性剪切之间发挥平衡。在第二个示例中,使用一个简单的油包油型乳剂芯片来获得规则的磁滴序列,这些磁滴在感应线圈内部循环,从而产生射频磁场。我们证明,即使在nL滴的尺度下,磁热产生的热量也可以转换为温度上升。在两种极限情况下,将结果与传热模型进行了比较:绝热与耗散。目的是破译关于在常规抗癌治疗范围内通过射频热疗加热肿瘤“幻影”所需的最小尺寸的难题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号