首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Analysis of Imaging Spectrometer Data Using -Dimensional Geometry and a Mixture-Tuned Matched Filtering Approach
【24h】

Analysis of Imaging Spectrometer Data Using -Dimensional Geometry and a Mixture-Tuned Matched Filtering Approach

机译:三维几何和混合调谐匹配滤波方法分析成像光谱仪数据

获取原文
获取原文并翻译 | 示例
           

摘要

Imaging spectrometers collect unique data sets that are simultaneously a stack of spectral images and a spectrum for each image pixel. While these data can be analyzed using approaches designed for multispectral images, or alternatively by looking at individual spectra, neither of these takes full advantage of the dimensionality of the data. Imaging spectrometer spectral radiance data or derived apparent surface reflectance data can be cast as a scattering of points in an $n$-dimensional Euclidean space, where $n$ is the number of spectral channels and all axes of the $n$-space are mutually orthogonal. Every pixel in the data set then has a point associated with it in the $n$– $d$ space, with its Cartesian coordinates defined by the values in each spectral channel. Given $n$-dimensional data, convex and affine geometry concepts can be used to identify the purest pixels in a given scene (the “endmembers”). $N$-dimensional visualization techniques permit human interpretation of all spectral information of all image pixels simultaneously and projection of the endmembers back to their locations in the imagery and to their spectral signatures. Once specific spectral endmembers are defined, partial linear unmixing (mixture-tuned matched filtering or “MTMF”) can be used to spectrally unmix the data and to accurately map the apparent abundance of a known target material in the presence of a composite background. MTMF incorporates the best attributes of matched filtering but extends-n-n that technique using the linear mixed-pixel model, thus leading to high selectivity between similar materials and minimizing classification and mapping errors for analysis of imaging spectrometer data.
机译:成像光谱仪收集独特的数据集,这些数据集同时是一堆光谱图像和每个图像像素的光谱。尽管可以使用为多光谱图像设计的方法来分析这些数据,或者通过查看单个光谱来分析这些数据,但是这些方法都不能充分利用数据的维数。成像光谱仪的光谱辐射度数据或派生的表观表面反射率数据可以转换为$ n $维欧几里德空间中点的散射,其中$ n $是光谱通道数,而$ n $空间的所有轴均为相互正交。然后,数据集中的每个像素在$ n $ – $ d $空间中都有一个与之关联的点,其笛卡尔坐标由每个光谱通道中的值定义。给定$ n $维数据,可以使用凸和仿射几何概念来识别给定场景中的最纯像素(“端成员”)。 $ N $维可视化技术允许人类同时解释所有图像像素的所有光谱信息,并将端构件投影回其在图像中的位置及其光谱特征。一旦定义了特定的光谱末端成员,就可以使用部分线性解混(混合物调谐匹配滤波或“ MTMF”)对数据进行光谱解混,并在存在复合背景的情况下准确映射已知目标物质的表观丰度。 MTMF结合了匹配滤波的最佳属性,但是使用线性混合像素模型扩展了该技术的n-n倍,从而导致相似材料之间的高选择性,并最大程度地减少了分类和映射误差,以分析成像光谱仪数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号