首页> 外文期刊>Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on >A Fast High-Level Event-Driven Thermal Estimator for Dynamic Thermal Aware Scheduling
【24h】

A Fast High-Level Event-Driven Thermal Estimator for Dynamic Thermal Aware Scheduling

机译:用于动态热感知调度的快速高级事件驱动热估算器

获取原文
获取原文并翻译 | 示例
           

摘要

Thermal aware scheduling (TAS) is an important system level optimization for many-core systems. A fast event driven thermal estimation method, which includes both the dynamic and leakage power models, for monitoring temperature and guiding dynamic TAS (DTAS) is proposed in this paper. The fast event driven thermal estimation is based upon a thermal map, with occasional thermal sensor-based calibration, which is updated only when a high level event occurs. To minimize the overhead, while maintaining the estimation accuracy, prebuilt look-up-tables and predefined leakage calibration parameters are used to speed up the thermal solution. Experimental results show our method is accurate, producing thermal estimations of similar quality to an existing open-source thermal simulator, while having a considerably reduced computational complexity. Based on this predictive approach, we take full advantage of a projected future thermal map to develop several heuristic policies for DTAS. We show that our proposed predictive policies are significantly better, in terms of minimizing average/peak temperature, reducing the dynamic thermal management overhead and improving other real-time features, than existing DTAS schedulers, making them highly suitable for heuristically guiding thermal aware task allocation and scheduling.
机译:热感知调度(TAS)是针对多核系统的重要系统级优化。提出了一种同时包含动态和泄漏功率模型的事件驱动快速热估计方法,该方法用于监测温度并指导动态TAS(DTAS)。快速事件驱动的热估计是基于热图的,偶尔会有基于热传感器的校准,该校准仅在发生高水平事件时才更新。为了最大程度地减少开销,同时保持估算精度,可使用预先建立的查找表和预定义的泄漏校准参数来加快散热速度。实验结果表明,我们的方法是准确的,可产生与现有开源热仿真器相似质量的热估算,同时大大降低了计算复杂度。基于这种预测方法,我们充分利用了预计的未来热图,为DTAS开发了几种启发式策略。我们显示,与现有的DTAS调度程序相比,我们建议的预测策略在最小化平均/峰值温度,减少动态热管理开销以及改善其他实时功能方面要明显优于现有的DTAS调度程序,从而使其非常适合启发式地指导热感知任务分配和调度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号