首页> 外文期刊>Signal Processing Magazine, IEEE >Image Processing and Analysis for Single-Molecule Localization Microscopy: Computation for nanoscale imaging
【24h】

Image Processing and Analysis for Single-Molecule Localization Microscopy: Computation for nanoscale imaging

机译:单分子定位显微镜的图像处理和分析:纳米成像的计算

获取原文
获取原文并翻译 | 示例
           

摘要

Fluorescence microscopy is currently the most important tool for visualizing biological structures at the sub?cellular scale. The combination of fluorescence, which enables a high imaging contrast, and the possibility to apply molecular labeling, which allows for a high imaging specificity, makes it a powerful imaging modality. The use of fluorescence microscopy has risen tremendously, in particular since the introduction of the green fluorescent protein (GFP) in the mid-1990s and the possibility to genetically engineer cells to express these proteins. Figure 1 shows the basic layout of a fluorescence microscope. Excitation light of a certain wavelength is reflected via a dichroic beamsplitter and projected onto the specimen via the objective lens of the microscope. The light is absorbed by the fluorescent labels and re-emitted, slightly Stokes-shifted by ?100 nm, at a larger wavelength, typically a few nanoseconds later. The emission light is captured by the objective lens and directed toward the camera via the dichroic beamsplitter.
机译:荧光显微镜是目前在亚细胞规模上可视化生物结构的最重要工具。可以实现高成像对比度的荧光与可以应用分子标记(可以实现高成像特异性)的组合使其成为强大的成像方式。荧光显微镜的使用已大大增加,特别是自从1990年代中期引入绿色荧光蛋白(GFP)以及通过基因工程改造细胞表达这些蛋白的可能性以来。图1显示了荧光显微镜的基本布局。特定波长的激发光通过二向色分束镜反射,并通过显微镜的物镜投射到样本上。光被荧光标记物吸收并重新发射,在更大的波长(通常在几纳秒后)处斯托克斯位移了约100 nm的轻微斯托克斯位移。发射光被物镜捕获,并通过二向色分束镜射向摄像机。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号