首页> 外文期刊>Computational and Structural Biotechnology Journal >Single-molecule optical microscopy of protein dynamics and computational analysis of images to determine cell structure development in differentiating Bacillus subtilis
【24h】

Single-molecule optical microscopy of protein dynamics and computational analysis of images to determine cell structure development in differentiating Bacillus subtilis

机译:蛋白质动力学的单分子光学显微镜和图像的计算分析,以确定枯草芽孢杆菌的细胞结构发育

获取原文
           

摘要

Here we use singe-molecule optical proteomics and computational analysis of live cell bacterial images, using millisecond super-resolved tracking and quantification of fluorescently labelled protein SpoIIE in single live Bacillus subtilis bacteria to understand its crucial role in cell development. Asymmetric cell division during sporulation in Bacillus subtilis presents a model system for studying cell development. SpoIIE is a key integral membrane protein phosphatase that couples morphological development to differential gene expression. However, the basic mechanisms behind its operation remain unclear due to limitations of traditional tools and technologies. We instead used advanced single-molecule imaging of fluorescently tagged SpoIIE in real time on living cells to reveal vital changes to the patterns of expression, localization, mobility and stoichiometry as cells undergo asymmetric cell division then engulfment of the smaller forespore by the larger mother cell. We find, unexpectedly, that SpoIIE forms tetramers capable of cell- and stage-dependent clustering, its copy number rising to?~?700 molecules as sporulation progresses. We observed that slow moving SpoIIE clusters initially located at septa are released as mobile clusters at the forespore pole as phosphatase activity is manifested and compartment-specific RNA polymerase sigma factor, σsupF/sup, becomes active. Our findings reveal that information captured in its quaternary organization enables one protein to perform multiple functions, extending an important paradigm for regulatory proteins in cells. Our findings more generally demonstrate the utility of rapid live cell single-molecule optical proteomics for enabling mechanistic insight into the complex processes of cell development during the cell cycle.
机译:在这里,我们使用单一活杆菌细菌的毫秒超分辨跟踪和定量氟代米菌的荧光标记蛋白质沼泽定量的单分子光学蛋白质组学和计算分析,以了解其在细胞发育中至关重要的作用。枯草芽孢杆菌孢子中的不对称细胞分裂呈现用于研究细胞发育的模型系统。 Spoiie是一种关键整体膜蛋白磷酸酶,其对差异基因表达致其形态学发育。然而,由于传统工具和技术的限制,其操作背后的基本机制仍然不明确。我们在生物细胞上实时使用了荧光标记的Spoiie的先进单分子成像,以揭示对表达,定位,迁移率和化学计量模式的重要变化,因为细胞经历不对称细胞分裂,然后通过较大的母细胞吞吐较小的额外额。我们出乎意料地发现,Spoie形成了能够进行细胞和阶段依赖聚类的四分体,其拷贝数升至?〜?700分子作为孢子率的进展。我们观察到,最初位于隔膜的缓慢移动的Spoiie簇作为缺氧酶活性的额外血管杆的移动簇被释放为表现出磷酸酶活性,并且隔室特异性的RNA聚合酶Sigma因子,σ f 变为活性。我们的研究结果表明,在第四纪组织中捕获的信息使一种蛋白质能够进行多种功能,延长细胞中调节蛋白的重要范例。我们的发现更普遍证明了快速活细胞单分子光学蛋白质组学的效用,以使机械洞察力洞察细胞周期中细胞发育的复杂过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号