...
首页> 外文期刊>IEEE Robotics and Automation Letters >Proposal and Prototyping of Self-Excited Pneumatic Actuator Using Automatic-Flow-Path-Switching-Mechanism
【24h】

Proposal and Prototyping of Self-Excited Pneumatic Actuator Using Automatic-Flow-Path-Switching-Mechanism

机译:使用自动流路切换机构的自激动气动执行器的提案和原型

获取原文
获取原文并翻译 | 示例
           

摘要

Robots currently have a wide range of practical applications. However, their widespread use is limited by long design and manufacturing times as well as increasingly complex drive system electronics and software, which have led to high development costs. Therefore, simpler manufacturing, driving, and control methods are required. In this study, we design a pneumatic actuator drive system that combines the printing technique and self-excited vibration. In the proposed actuator, a mechanism for automatically switching the airflow path is used to induce self-excited vibration. Moreover, the actuator is integrally molded by a 3D printer; therefore, no assembly process is required. This actuator can be used to easily build robots in a short time, contributing to more widespread use of robots. In this study, we also calculate the theoretical value of the moving frequency by modeling the actuator and verify the validity of this value through experiments using a prototype actuator. Based on the results, we were able to freely design the operating frequency of the actuator; by using this knowledge, we designed a flapping robot. The robot is also integrally molded by a 3D printer. Finally, we validate its motion through experiments, in order to illustrate one of the many applications of the proposed actuator.
机译:机器人目前拥有各种实际应用。然而,他们广泛的使用受长设计和制造时间的限制,以及越来越复杂的驱动系统电子和软件,导致了高开发成本。因此,需要更简单的制造,驱动和控制方法。在这项研究中,我们设计了一种充满印刷技术和自我激发振动的气动执行器驱动系统。在所提出的执行器中,用于自动切换气流路径的机构用于诱导自我激发振动。此外,致动器通过3D打印机整体模制;因此,不需要装配过程。该执行器可用于在短时间内轻松构建机器人,有助于更广泛使用机器人。在本研究中,我们还通过使用原型执行器通过实验来计算移动频率的理论值,并通过使用原型执行器验证该值的有效性。根据结果​​,我们能够自由地设计执行器的工作频率;通过使用这些知识,我们设计了一个拍打机器人。机器人也由3D打印机整体模制。最后,我们通过实验验证其动作,以说明所提出的执行器的许多应用之一。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号