首页> 外文期刊>Selected Topics in Quantum Electronics, IEEE Journal of >Electrically Driven Photonic Crystal Nanocavity Devices
【24h】

Electrically Driven Photonic Crystal Nanocavity Devices

机译:电驱动光子晶体纳米腔设备

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Interest in photonic crystal nanocavities is fueled by advances in device performance, particularly in the development of low-threshold laser sources. Effective electrical control of high-performance photonic crystal lasers has thus far remained elusive due to the complexities associated with current injection into cavities. A fabrication procedure for electrically pumping photonic crystal membrane devices using a lateral p-i-n junction has been developed and is described in this study. We have demonstrated electrically pumped lasing in our junctions with a threshold of 181 nA at 50 K—the lowest threshold ever demonstrated in an electrically pumped laser. At room temperature, we find that our devices behave as single-mode light-emitting diodes (LEDs), which when directly modulated, have an ultrafast electrical response up to 10 GHz corresponding to less than 1 fJ/bit energy operation—the lowest for any optical transmitter. In addition, we have demonstrated electrical pumping of photonic crystal nanobeam LEDs, and have built fiber taper coupled electro-optic modulators. Fiber-coupled photodetectors based on two-photon absorption are also demonstrated as well as multiply integrated components that can be independently electrically controlled. The presented electrical injection platform is a major step forward in providing practical low power and integrable devices for on-chip photonics.
机译:器件性能的进步,特别是在低阈值激光源的开发中,激发了人们对光子晶体纳米腔的兴趣。迄今为止,由于与腔内注入电流相关的复杂性,对高性能光子晶体激光器的有效电控制仍然难以捉摸。已经开发了使用横向p-i-n结电泵浦光子晶体膜器件的制造程序,并在本研究中进行了描述。我们已经证明了在结点处的电泵浦激光激射,在50 K时的阈值为181 nA,这是有史以来最低的电泵浦激光阈值。在室温下,我们发现我们的设备就像单模发光二极管(LED)一样,当直接调制时,它们具有高达10 GHz的超快电响应,对应于低于1 fJ / bit的能量操作-最低任何光发射机。此外,我们已经演示了光子晶体纳米光束LED的电泵浦,并建立了光纤锥耦合电光调制器。还展示了基于双光子吸收的光纤耦合光电探测器,以及可以独立电控的多个集成组件。提出的电注入平台是向芯片上光子学提供实用的低功耗和可集成器件的重要一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号