首页> 外文期刊>IEEE Journal of Quantum Electronics >Numerical Study on the Supercontinuum Generation in an Active Highly Nonlinear Photonic Crystal Fiber With Flattened All-Normal Dispersion
【24h】

Numerical Study on the Supercontinuum Generation in an Active Highly Nonlinear Photonic Crystal Fiber With Flattened All-Normal Dispersion

机译:全正态色散平坦的有源高非线性光子晶体光纤中超连续谱产生的数值研究

获取原文
获取原文并翻译 | 示例
       

摘要

- First to perform a numerical study on supercontinuum (SC) generation (SCG) based on an active highly-nonlinear photonic crystal fiber (HNL-PCF) in sub-ps regime - First to quantitatively analyze the following gain-induced effects in SCG: (1) Enhancement of energy spectral density of the SC spectrum by the combined effects of the amplification of the central wavelength contents and their nonlinear spectral broadening (2) Extension of the nonlinear interaction length by the recovery of the depleted peak-power of the SC pulse - First to comparatively analyze two energy-scaling schemes for SCG, utilizing (1) lumped amplifier followed by a passive-type HNL-PCF and (2) an active-type HNL-PCF - First to numerically demonstrate the effective amplification of a SC pulse without significant degradation of the spectral bandwidth and flatnessWe numerically study the dynamics of supercontinuum generation (SCG) in an ytterbium-doped highly nonlinear photonic crystal fiber (HNL-PCF) with flattened all-normal dispersion (FAND) in the sub-picosecond pulse regime. We discuss the enhancement of the energy spectral density and the recovery of the peak power depletion in the SCG process through the fiber in comparison with the SCG based on a passive-type counterpart. As a unique application of the novel characteristics of the active HNL-PCF with FAND, we also analyze the direct amplification of an SC pulse through it, showing that the incident SC pulse can be amplified by 10 dB without undergoing significant degradations in terms of spectral bandwidth and flatness. Our numerical investigations on the active HNL-PCF with FAND will be helpful for opening up new opportunities for fiber-based SCG technology in the sub-picosecond regime.
机译:-首先以亚ps级为基础的有源高非线性光子晶体光纤(HNL-PCF)对超连续谱(SCG)产生(SCG)进行数值研究-首先定量分析以下增益引起的SCG效应: (1)通过中心波长内容的放大及其非线性光谱展宽的组合效应来增强SC光谱的能量谱密度(2)通过恢复SC的耗尽峰功率来扩展非线性相互作用长度脉冲-首先比较分析SCG的两种能量缩放方案,利用(1)集总放大器,然后是无源HNL-PCF和(2)有源HNL-PCF-首先以数值方式证明有效放大不会显着降低频谱带宽和平坦度的SC脉冲我们数值研究了掺study的高度非线性光子晶体光纤(HNL-PCF)中的超连续谱产生(SCG)的动力学亚皮秒脉冲范围内的全正态色散(FAND)。与基于无源类型的SCG相比,我们讨论了通过光纤在SCG过程中能量谱密度的增强和峰值功率损耗的恢复。作为具有FAND的有源HNL-PCF新颖特性的独特应用,我们还分析了通过它的SC脉冲的直接放大,显示出入射SC脉冲可以放大10 dB,而不会在频谱方面出现明显的下降带宽和平坦度。我们对带有FAND的有源HNL-PCF的数值研究将有助于在亚皮秒级范围内为基于光纤的SCG技术开辟新的机遇。

著录项

  • 来源
    《IEEE Journal of Quantum Electronics》 |2017年第5期|1-8|共8页
  • 作者单位

    Department of Electrical and Computer Engineering, Institute of Applied Physics, Seoul National University, Laser Engineering and Applications Laboratory, Inter-University Semiconductor Research Center, Seoul, South Korea;

    Department of Electrical and Computer Engineering, Institute of Applied Physics, Seoul National University, Laser Engineering and Applications Laboratory, Inter-University Semiconductor Research Center, Seoul, South Korea;

    Department of Electrical and Computer Engineering, Institute of Applied Physics, Seoul National University, Laser Engineering and Applications Laboratory, Inter-University Semiconductor Research Center, Seoul, South Korea;

    Department of Electrical and Computer Engineering, Institute of Applied Physics, Seoul National University, Laser Engineering and Applications Laboratory, Inter-University Semiconductor Research Center, Seoul, South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Optical fiber amplifiers; Optical pulses; Optical fiber dispersion; Nonlinear optics;

    机译:光纤放大器;光脉冲;光纤色散;非线性光学;
  • 入库时间 2022-08-17 13:24:58

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号