首页> 外文期刊>IEEE Journal of Quantum Electronics >Internal efficiency of semiconductor lasers with a quantum-confined active region
【24h】

Internal efficiency of semiconductor lasers with a quantum-confined active region

机译:具有量子限制有源区的半导体激光器的内部效率

获取原文
       

摘要

We discuss in detail a new mechanism of nonlinearity of the light-current characteristic (LCC) in heterostructure lasers with reduced-dimensionality active regions, such as quantum wells (QWs), quantum wires (QWRs), and quantum dots (QDs). It arises from: 1) noninstantaneous carrier capture into the quantum-confined active region and 2) nonlinear (in the carrier density) recombination rate outside the active region. Because of 1), the carrier density outside the active region rises with injection current, even above threshold, and because of 2), the useful fraction of current (that ends up as output light) decreases. We derive a universal closed-form expression for the internal differential quantum efficiency /spl eta//sub int/ that holds true for QD, QWR, and QW lasers. This expression directly relates the power and threshold characteristics. The key parameter, controlling /spl eta//sub int/ and limiting both the output power and the LCC linearity, is the ratio of the threshold values of the recombination current outside the active region to the carrier capture current into the active region. Analysis of the LCC shape is shown to provide a method for revealing the dominant recombination channel outside the active region. A critical dependence of the power characteristics on the laser structure parameters is revealed. While the new mechanism and our formal expressions describing it are universal, we illustrate it by detailed exemplary calculations specific to QD lasers. These calculations suggest a clear path for improvement of their power characteristics. In properly optimized QD lasers, the LCC is linear and the internal quantum efficiency is close to unity up to very high injection-current densities (15 kA/cm/sup 2/). Output powers in excess of 10 W at /spl eta//sub int/ higher than 95% are shown to be attainable in broad-area devices. Our results indicate that QD lasers may possess an advantage for high-power applications.
机译:我们详细讨论了具有减小尺寸的有源区(例如量子阱(QWs),量子线(QWRs)和量子点(QDs))的异质结构激光器中光电流特性(LCC)非线性的新机制。它来自:1)非瞬时载流子捕获到量子限制的有源区域中; 2)有源区域外部的非线性(载流子密度)复合率。由于1),有源区域外部的载流子密度随注入电流而升高,甚至高于阈值,并且由于2),电流的有用部分(随着输出光而结束)降低。我们为内部差分量子效率/ spleta // subint /推导了一个通用的封闭形式表达式,该表达式适用于QD,QWR和QW激光器。该表达式直接与功率和阈值特性相关。控制/限制/限制输出功率和LCC线性度的关键参数是有源区域外的重组电流的阈值与进入有源区域的载流子捕获电流的比值。示出了对LCC形状的分析提供了一种用于揭示活性区域外部的主要重组通道的方法。揭示了功率特性对激光器结构参数的关键依赖性。尽管新机制和描述它的形式表达式是通用的,但我们通过针对QD激光器的详细示例性计算来说明它。这些计算为改善其功率特性提供了一条明确的途径。在经过适当优化的QD激光器中,LCC是线性的,内部量子效率在非常高的注入电流密度(15 kA / cm / sup 2 /)时接近于1。在广域设备中,在/ spleta // sub int /处高于10%的输出功率可达到10 W以上。我们的结果表明,QD激光器在高功率应用中可能具有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号