首页> 外文期刊>IEEE Journal of Quantum Electronics >Modal birefringence and power density distribution in strained buried-core square waveguides
【24h】

Modal birefringence and power density distribution in strained buried-core square waveguides

机译:应变埋芯方形波导中的模态双折射和功率密度分布

获取原文
获取原文并翻译 | 示例
       

摘要

The optical properties of engineered devices derive from the flow of energy within the structure, a flow that is governed by the interaction between device architecture and material properties. With evolving device and system sophistication, implementation of manufacturing processes becomes an exercise in global optimization. This task is addressed in the design phase by choosing metrics that correlate with critical operating parameters of the device. We illustrate two complementary metrics, arising from the same physical effect, that manifest at different length scales. By considering the thermoelastic properties of a doped-glass multilayer with an embedded waveguide, we reveal the impact of stress on modal birefringence and optical power distributions. The modal birefringence of a single-mode buried-core square waveguide irreducibly describes a discrete metric whose value derives from global strain contributions. It is an ideal metric for addressing polarization-dependent wavelength shifts in arrayed waveguide grating devices, which are particularly sensitive to material stresses over long length scales. By contrast, the power density distribution in the bound mode is a distributed metric dependent on local properties and is thus more suitable for devices whose operability is dependent upon shorter length scales. These complementary characterizations of stress-optical coupling are numerically assessed by finite element analysis. The material stresses are first found through solution of the structural problem, with subsequent solution of the the full-vector anisotropic Maxwell's equations as an eigenvalue problem. We found the modal birefringence to be primarily governed by the properties of the cladding material, the core properties having a negligible effect, while fine control may be achieved by varying the position of the interface between the lower and upper cladding. This demonstrates its suitability as a metric for devices primarily reliant on isolated waveguides. At shorter length scales, through contrast with the isotropic case, we showed that stress-optical coupling suppresses the in-plane symmetry axis of the logarithmic difference in spatial power densities, regardless of the degeneracy of the optical mode, with asymptotic behavior that effectiv-nely diverges. This revealed a metric of potential applicability for interferometric and evanescently coupled structures.
机译:工程设备的光学特性源自结构内的能量流,该能量流由设备体系结构和材料属性之间的相互作用控制。随着设备和系统的不断发展,制造过程的实施成为全局优化中的一项工作。通过选择与设备的关键操作参数相关的指标,可以在设计阶段解决此任务。我们说明了来自相同物理效果的两个互补量度,它们以不同的长度尺度体现。通过考虑具有嵌入式波导的掺杂玻璃多层的热弹性特性,我们揭示了应力对模态双折射和光功率分布的影响。单模埋芯方形波导的模态双折射不可避免地描述了一种离散度量,其值源自整体应变贡献。这是解决阵列波导光栅设备中与偏振有关的波长偏移的理想度量,该设备对长尺度的材料应力特别敏感。相反,绑定模式下的功率密度分布是取决于局部属性的分布式度量,因此更适用于其可操作性取决于较短的长度范围的设备。应力-光耦合的这些互补特征通过有限元分析进行了数值评估。首先通过解决结构问题找到材料应力,然后将全矢量各向异性麦克斯韦方程组的随后解决作为特征值问题。我们发现,模态双折射主要由包层材料的特性决定,纤芯特性的影响可忽略不计,而通过改变上下包层之间的界面位置可以实现精细控制。这证明了它适合作为主要依赖于隔离波导的设备的度量标准。在较短的长度尺度上,通过与各向同性情况的对比,我们表明,应力-光耦合抑制了空间功率密度的对数差异的面内对称轴,而与光学模式的退化无关,其渐近行为会影响内利分歧。这揭示了干涉和e逝耦合结构的潜在适用性度量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号