...
首页> 外文期刊>IBM Journal of Research and Development >Neural network accelerator design with resistive crossbars: Opportunities and challenges
【24h】

Neural network accelerator design with resistive crossbars: Opportunities and challenges

机译:具有电阻式交叉开关的神经网络加速器设计:机遇与挑战

获取原文
获取原文并翻译 | 示例

摘要

Deep neural networks (DNNs) achieve best-known accuracies in many machine learning tasks involved in image, voice, and natural language processing and are being used in an ever-increasing range of applications. However, their algorithmic benefits are accompanied by extremely high computation and storage costs, sparking intense efforts in optimizing the design of computing platforms for DNNs. Today, graphics processing units (GPUs) and specialized digital CMOS accelerators represent the state-of-the-art in DNN hardware, with near-term efforts focusing on approximate computing through reduced precision. However, the ever-increasing complexities of DNNs and the data they process have fueled an active interest in alternative hardware fabrics that can deliver the next leap in efficiency. Resistive crossbars designed using emerging nonvolatile memory technologies have emerged as a promising candidate building block for future DNN hardware fabrics since they can natively execute massively parallel vector-matrix multiplications (the dominant compute kernel in DNNs) in the analog domain within the memory arrays. Leveraging in-memory computing and dense storage, resistive-crossbar-based systems cater to both the high computation and storage demands of complex DNNs and promise energy efficiency beyond current DNN accelerators by mitigating data transfer and memory bottlenecks. However, several design challenges need to be addressed to enable their adoption. For example, the overheads of peripheral circuits (analog-to-digital converters and digital-to-analog converters) and other components (scratchpad memories and on-chip interconnect) may significantly diminish the efficiency benefits at the system level. Additionally, the analog crossbar computations are intrinsically subject to noise due to a range of device- and circuit-level nonidealities, potentially leading to lower accuracy at the application level. In this article, we highlight the prospects for designing hardware accelerators for neural networks using resistive crossbars. We also underscore the key open challenges and some possible approaches to address them.
机译:深度神经网络(DNN)在涉及图像,语音和自然语言处理的许多机器学习任务中都实现了最著名的准确性,并且正被越来越多的应用所使用。然而,它们的算法优势伴随着极高的计算和存储成本,从而引发了为优化DNN计算平台的设计而付出的巨大努力。如今,图形处理单元(GPU)和专用的数字CMOS加速器代表了DNN硬件中的最新技术,近期的工作重点是通过降低精度来进行近似计算。但是,DNN及其处理数据的复杂性不断增加,引起了人们对替代硬件结构的积极兴趣,这些硬件结构可以实现效率的下一个飞跃。使用新兴的非易失性存储技术设计的电阻式交叉开关已成为未来DNN硬件结构的有希望的候选构建块,因为它们可以在存储阵列内的模拟域中本地执行大规模并行矢量矩阵乘法(DNN中的主要计算内核)。利用基于内存的计算和密集存储,基于电阻交叉开关的系统既可以满足复杂DNN的高计算和存储需求,又可以通过减轻数据传输和内存瓶颈来保证超越当前DNN加速器的能源效率。但是,需要解决一些设计挑战才能使其被采用。例如,外围电路(模数转换器和数模转换器)和其他组件(暂存器存储器和片上互连)的开销可能会大大降低系统级的效率优势。此外,由于一系列器件和电路级的非理想性,模拟纵横制计算本质上会受到噪声的影响,有可能导致应用级精度降低。在本文中,我们重点介绍了使用电阻式交叉开关为神经网络设计硬件加速器的前景。我们还强调了关键的开放挑战以及解决这些挑战的一些可能方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号