...
首页> 外文期刊>Human Molecular Genetics >Onset and organ specificity of Tk2 deficiency depends on Tk1 down-regulation and transcriptional compensation
【24h】

Onset and organ specificity of Tk2 deficiency depends on Tk1 down-regulation and transcriptional compensation

机译:Tk2缺乏症的发作和器官特异性取决于Tk1下调和转录补偿

获取原文
获取原文并翻译 | 示例

摘要

Deficiency of thymidine kinase 2 (TK2) is a frequent cause of isolated myopathy or encephalomyopathy in children with mitochondrial DNA (mtDNA) depletion. To determine the bases of disease onset, organ specificity and severity of TK2 deficiency, we have carefully characterized Tk2 H126N knockin mice (Tk2−/−). Although normal until postnatal day 8, Tk2−/− mice rapidly develop fatal encephalomyopathy between postnatal days 10 and 13. We have observed that wild-type Tk2 activity is constant in the second week of life, while Tk1 activity decreases significantly between postnatal days 8 and 13. The down-regulation of Tk1 activity unmasks Tk2 deficiency in Tk2−/− mice and correlates with the onset of mtDNA depletion in the brain and the heart. Resistance to pathology in Tk2 mutant organs depends on compensatory mechanisms to the reduced mtDNA level. Our analyses at postnatal day 13 have revealed that Tk2−/− heart significantly increases mitochondrial transcript levels relative to the mtDNA content. This transcriptional compensation allows the heart to maintain normal levels of mtDNA-encoded proteins. The up-regulation in mitochondrial transcripts is not due to increased expression of the master mitochondrial biogenesis regulators peroxisome proliferator-activated receptor-gamma coactivator 1 alpha and nuclear respiratory factors 1 and 2, or to enhanced expression of the mitochondrial transcription factors A, B1 or B2. Instead, Tk2−/− heart compensates for mtDNA depletion by down-regulating the expression of the mitochondrial transcriptional terminator transcription factor 3 (MTERF3). Understanding the molecular mechanisms that allow Tk2 mutant organs to be spared may help design therapies for Tk2 deficiency.
机译:缺乏胸腺嘧啶核苷激酶2(TK2)是线粒体DNA(mtDNA)耗竭儿童患孤立性肌病或脑肌病的常见原因。为了确定疾病发作的基础,器官特异性和TK2缺乏症的严重程度,我们仔细表征了Tk2 H126N敲入小鼠(Tk2 -/-)。尽管在出生后第8天之前正常,但Tk2 -/-小鼠在出生后第10天和第13天之间迅速发展出致命性脑脊髓病。我们观察到,野生型Tk2活性在生命的第二周是恒定的,而Tk1在出生后第8天到第13天之间,Tk1活性显着降低。Tk1活性的下调掩盖了Tk2 -/-小鼠中Tk2的缺乏,并与脑和心脏中mtDNA消耗的发作有关。 Tk2突变器官对病理的抵抗力取决于减少mtDNA水平的补偿机制。我们在出生后第13天的分析显示,相对于mtDNA含量,Tk2 -// 心脏显着增加了线粒体的转录水平。这种转录补偿使心脏能够维持正常水平的mtDNA编码蛋白。线粒体转录本的上调不是由于主要的线粒体生物发生调节剂过氧化物酶体增殖物激活的受体-γ共激活子1α和核呼吸因子1和2的表达增加,也不是由于线粒体转录因子A,B1或B2。相反,Tk2 -/-心脏通过下调线粒体转录终止子转录因子3(MTERF3)的表达来补偿mtDNA的消耗。了解使Tk2突变器官得以幸免的分子机制可能有助于设计针对Tk2缺乏症的疗法。

著录项

  • 来源
    《Human Molecular Genetics 》 |2011年第1期| p.155-164| 共10页
  • 作者单位

    Department of Neurology, Columbia University Medical Center, 630 West 168th Street, P&S 4-423, New York, NY 10032, USA;

    Department of Neurology, Columbia University Medical Center, 630 West 168th Street, P&S 4-423, New York, NY 10032, USA;

    Department of Neurology, Columbia University Medical Center, 630 West 168th Street, P&S 4-423, New York, NY 10032, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号