首页> 外文期刊>Heat and mass transfer >Numerical investigation on effects of fuel tube diameter and co-flow velocity in a methane/air non-premixed flame
【24h】

Numerical investigation on effects of fuel tube diameter and co-flow velocity in a methane/air non-premixed flame

机译:燃料管直径和氟于掺入火焰中燃料管直径和助流速度影响的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, the effects of variations in the fuel tube diameter and co-flow velocity in the combustion chamber on the non-premixed laminar flame are investigated. Methane gas, as a fuel, and the dry air, as an oxidizer. The size of the combustion chamber is constant and, by changing the fuel tube diameter and co-flow velocity, changes in the numerical values of temperature, velocity, density, and concentration of the species of reactants and products in the combustion chamber are evaluated. A finite volume method (FVM) with staggered grids is used for numerical solution. Equations of continuity, momentum, energy, ideal gas state and kinetic equations with thermodynamic and thermochemical information of chemical species are solved using numerical method of SIMPLE. The convective terms are discretized using Power Law scheme (PLS).The calculations are carried out using Dryer and Glassman's three-stage chemical kinetics. Variable under relaxation factor dependent on temperature has been used to handle the solving chemical kinetic equations. Initially, the results of calculations are compared with the experimental and numerical results of other researchers, which show an acceptable agreement.. The results show that increasing the diameter ratio reduces the length of the flame. With the large ratio of the diameters, location of the combustion's maximum temperature is at the chamber entrance and for the small diameter ratios, its location moves to nearly outlet of the chamber. In addition, the reduction of the ratio of the diameters increases the flame lift-off. Also the results show that the optimal of diameters ratio is 0.6 in order to prevent the lift-off flame and return the flame to inlet opening of combustion chamber. Also increasing the fuel tube diameter, increases the amount of oxygen due to the return flow formation and decreases the volumes of water vapor and carbon dioxide in the centerline of the combustion chamber. The flame length attains the maximum possible value with respect to diameter ratio of 0.6 at inlet air velocity of 0.3 m/s. In addition, it is shown that increasing the air velocity increases the total flame lift-off and flame length until the air velocity reaches the value of around 0.3 m/s and by increasing the air velocity more than 0.3 m/s, the total flame lift-off and flame length decreases.
机译:本文研究了燃烧室中燃料管直径和燃烧室中的燃料管速度的变化的影响。甲烷气体,作为燃料和干燥空气,作为氧化剂。燃烧室的尺寸是恒定的,并且通过改变燃料管直径和混合速度,评估燃烧室中的温度,速度,密度和浓度的数值的变化和燃烧室中的燃烧室中的产物的浓度。具有交错网格的有限体积法(FVM)用于数值溶液。使用数值方法解决了具有热力学和化学物质的热力学和热化学信息的连续性,动量,能量,理想气体状态和动力学方程的方程。使用电力法方案(PLS)离散化对流术语。使用烘干机和Glassman的三级化学动力学进行计算。依赖于温度的弛豫系数下可变用于处理求解化学动力学方程。最初,将计算结果与其他研究人员的实验性和数值结果进行比较,其显示可接受的协议。结果表明,增加直径比率降低了火焰的长度。随着直径的大比例,燃烧的最大温度的位置处于腔室入口和小直径比,其位置移动到腔室的几乎出口。另外,缩小直径的比例增加了火焰升降。结果结果表明,直径比的最佳比例为0.6,以防止剥离火焰并将火焰返回到燃烧室的入口开口。同样增加燃料管直径,由于返回流量形成增加氧气量,并降低燃烧室的中心线中的水蒸气和二氧化碳的体积。火焰长度在入口空气速度为0.3米/秒的入口空气速度方向达到最大可能值。另外,表明,增加空气速度增加了总火焰升空和火焰长度,直到空气速度达到约0.3米/秒,并且通过增加大于0.3米/秒的空气速度,总火焰剥离和火焰长度降低。

著录项

  • 来源
    《Heat and mass transfer》 |2020年第5期|1697-1711|共15页
  • 作者单位

    Department of Thermo-Fluids School of Mechanical Engineering Shiraz University Shiraz Fars 71348-51154 Iran;

    Department of Thermo-Fluids School of Mechanical Engineering Shiraz University Shiraz Fars 71348-51154 Iran;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号