...
首页> 外文期刊>Gyroscopy and navigation >Nuclear Magnetic Resonance Gyro for Inertial Navigation
【24h】

Nuclear Magnetic Resonance Gyro for Inertial Navigation

机译:惯性导航用核磁共振陀螺仪

获取原文
获取原文并翻译 | 示例

摘要

Since its discovery by Jsidor Rabi in 1938 and his subsequent Nobel Prize in physics in 1944, scientists have been using nuclear magnetic resonance (NMR) technologies as a tool in analytic chemistry, biochemistry, and the study of atomic interactions. In 1952 General Electric proposed that a gyro could be made based on NMR technology, in particular the concept of using the intrinsic quantum property of spin was of interest, specifically the stability of a quantized angular momentum of a nucleus when subjected to a stable magnetic field. From roughly 1952 to 1980 several groups worked on the concept and development of an NMR based gyro, with some being more successful than others. While the fundamentals of the technology were understood and the concept demonstrated, the enabling technologies required to develop a compact, robust design that would operate outside of the controlled laboratory environment were not available. For the past several years Northrop Grumman has been investigating and developing a NMR-Gyro. Owing to the advancement in enabling technologies a small robust gyro package can now be produced. The current micro-NMRG design is housed in a 10 cubic centimeter package and has been tested over a limited environment. Projected size estimate for a 6 degree-of-freedom inertial measurement unit is on the order of 300 cc with a power draw of a few watts. Initial testing of the unit has shown a performance level better than any MEMS device currently available as well as approaching the performance of many fiber optic gyros. The micro-NMR-Gyro has the potential to provide the end user a high-performance device in a small robust package. Presented in this paper is a summary of the basic principles of operation and performance testing results of the hardware to date.
机译:自从Jsidor Rabi在1938年发现它和随后在1944年获得诺贝尔物理学奖以来,科学家们一直将核磁共振(NMR)技术用作分析化学,生物化学和原子相互作用研究的工具。 1952年,通用电气提出了一种可以基于NMR技术制造陀螺仪的方法,特别是使用自旋的固有量子特性的概念引起了人们的关注,特别是在稳定磁场作用下,核的量化角动量的稳定性。从大约1952年到1980年,几个小组致力于基于NMR的陀螺仪的概念和开发,其中一些小组比其他小组更成功。尽管了解了该技术的基本原理并演示了该概念,但尚无法提供能够在受控实验室环境之外运行的紧凑,耐用设计所需的支持技术。在过去的几年中,诺斯罗普·格鲁曼公司一直在研究和开发NMR陀螺仪。由于使能技术的进步,现在可以生产出小型的坚固陀螺仪组件。当前的micro-NMRG设计位于10立方厘米的包装中,并已在有限的环境中进行了测试。 6自由度惯性测量单元的预计尺寸估计为300 cc,功耗为几瓦。对该单元的初步测试显示,其性能水平优于当前可用的任何MEMS器件,并且已接近许多光纤陀螺仪的性能。微型NMR陀螺仪有潜力以小巧耐用的封装为最终用户提供高性能的设备。本文介绍了迄今为止的基本操作原理和硬件性能测试结果。

著录项

  • 来源
    《Gyroscopy and navigation》 |2014年第2期|75-82|共8页
  • 作者

    D. Meyer; M. Larsen;

  • 作者单位

    Northrop Grumman-Advanced Concepts and Technologies Division, Woodland Hills, CA, USA;

    Northrop Grumman-Advanced Concepts and Technologies Division, Woodland Hills, CA, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号