首页> 外文期刊>Graphs and Combinatorics >Bichromatic Quadrangulations with Steiner Points
【24h】

Bichromatic Quadrangulations with Steiner Points

机译:Steiner点的双色四边形

获取原文
获取原文并翻译 | 示例
       

摘要

Let P be a k colored point set in general position, k ≥ 2. A family of quadrilaterals with disjoint interiors $mathcal Q_1, ldots, mathcal Q_m$ is called a quadrangulation of P if $V(mathcal Q_1) cup cdots cup V(mathcal Q_m) = P$ , the edges of all $mathcal Q_i$ join points with different colors, and $mathcal Q_1 cup cdots cup mathcal Q_m = {rm Conv} (P)$ . In general it is easy to see that not all k-colored point sets admit a quadrangulation; when they do, we call them quadrangulatable. For a point set to be quadrangulatable it must satisfy that its convex hull Conv(P) has an even number of points and that consecutive vertices of Conv(P) receive different colors. This will be assumed from now on. In this paper, we study the following type of questions: Let P be a k-colored point set. How many Steiner points in the interior of Conv(P) do we need to add to P to make it quadrangulatable? When k = 2, we usually call P a bichromatic point set, and its color classes are usually denoted by R and B, i.e. the red and blue elements of P. In this paper, we prove that any bichromatic point set $P = Rcup B$ where |R| = |B| = n can be made quadrangulatable by adding at most $leftlfloorfrac{n -1}{3}rightrfloor + leftlfloorfrac{n}{2}rightrfloor + 1$ Steiner points and that $frac{m}{3}$ Steiner points are occasionally necessary. To prove the latter, we also show that the convex hull of any monochromatic point set P of n elements can be always partitioned into a set ${mathcal{S}} = {{mathcal{S}}_1,ldots, {mathcal{S}}_{t}}$ of star-shaped polygons with disjoint interiors, where $V({mathcal{S}}_1)cupcdotscup V({mathcal{S}}_{t }) = P$ , and $tleq leftlfloorfrac{n - 1}{3}rightrfloor+1$ . For n = 3k this bound is tight. Finally, we prove that there are 3-colored point sets that cannot be completed to 3-quadrangulatable point sets.
机译:设P为一般位置上设置的ak个彩色点,k≥2。如果$ V(mathcal Q_1)杯cdots cup V(mathcal Q_m)= P $,所有$ mathcal Q_i $的边连接点具有不同的颜色,并且$ mathcal Q_1杯cdots cup数学值Q_m = {rm Conv}(P)$。总的来说,很容易看出并非所有的k色点集都允许四边形。当它们出现时,我们称它们为四边形。为了使点集可四边形化,必须满足其凸包Conv(P)具有偶数个点且Conv(P)的连续顶点接收不同颜色的要求。从现在开始将假定这一点。在本文中,我们研究以下类型的问题:令P为k色点集。我们需要在Conv(P)的内部添加几个Steiner点,以使其变为四边形?当k = 2时,我们通常称P为双色点集,其颜色类别通常用R和B表示,即P的红色和蓝色元素。在本文中,我们证明了任何双色点集$ P = Rcup B $其中| R | = | B | = n可通过最多添加$ leftlfloorfrac {n -1} {3} rightrfloor + leftlfloorfrac {n} {2} rightrfloor + 1 $ Steiner点而变成四边形,而$ frac {m} {3} $ Steiner点有时是必要。为了证明后者,我们还证明了n个元素的任何单色点集P的凸包都可以始终划分为集合$ {mathcal {S}} = {{mathcal {S}} _ 1,ldots,{mathcal { S}} _ {t}} $个内部不相交的星形多边形,其中$ V({mathcal {S}} _ 1)cupcdotscup V({mathcal {S}} _ {t})= P $和$ tleq leftlfloorfrac {n-1} {3} rightrfloor + 1 $。对于n = 3k,该界限很严格。最后,我们证明了3色点集无法完成3拟三角点集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号