首页> 外文期刊>Global and planetary change >Precession-driven monsoon variability at the Permian-Triassic boundary : Implications for anoxia and the mass extinction
【24h】

Precession-driven monsoon variability at the Permian-Triassic boundary : Implications for anoxia and the mass extinction

机译:二叠系-三叠纪边界上进动驱动的季风变化:对缺氧和物种灭绝的影响

获取原文
获取原文并翻译 | 示例
       

摘要

By the end of the Late Permian, most continents had collided to form the supercontinent of Pangea. The associated climatic changes at the Permian-Triassic boundary coincided with the most severe mass extinction in the Phanerozoic. One extinction hypothesis favors a climatic response to an increase in large-scale volca-nism resulting in ocean stagnation and widespread anoxia with fatal consequences for marine and land organisms. Recent interpretations of geochemical data suggest that orbitally-driven periodic upwelling of toxic hydrogen-sulfide rich water masses contributed to the extinction of species. In this paper, we use the Community Climate System Model (CCSM3) in order to explore the effect of eccentricity-modulated changes of the precession on the strength of Pangean megamonsoons and their impact on productivity and oxygen distribution. The climate model simulates high variability in monsoonal precipitation, trade winds and equatorial upwelling in response to precessional extremes, leading to remarkable fluctuations in the export of carbon from the euphotic zone and hence reduction in dissolved oxygen concentrations in subsurface layers. These findings are in general agreement with increased primary productivity, intensified euxinia within the oxygen-minimum zone, and decimation of the radiolarian zooplankton community as inferred from Japanese marine sections. Strong changes in river run-off linked to precipitation oscillations possibly led to a high variability in the nutrient supply to the Tethys Ocean, thus affecting regional productivity and oxygen distribution. The model results suggest that orbital variability in the sedimentary record and the associated extinction of species are related rather to periodic anoxia in near surface-to-intermediate depth than to widespread anoxic events in the Panthalassic deep-sea.
机译:到二叠纪末,大多数大陆相撞形成了Pangea的超大陆。二叠纪-三叠纪边界的相关气候变化与古生代最严重的生物灭绝相吻合。一种灭绝假说赞成对大规模火山活动增加做出气候反应,导致海洋停滞和普遍的缺氧,对海洋和陆地生物造成致命的后果。地球化学数据的最新解释表明,有毒硫化氢丰富的水体的轨道驱动周期性上升是物种灭绝的原因。在本文中,我们使用社区气候系统模型(CCSM3)来探索旋进度的偏心率调制变化对Pangean巨型季风强度及其对生产力和氧气分布的影响。气候模型模拟季风性降水,商风和赤道上升流的高度变化,以响应进动极端事件,从而导致从富营养区的碳出口显着波动,从而降低了地下层的溶解氧浓度。这些发现与从日本海域推断的初级生产力的提高,氧气最小区域内的富余性增强以及放射虫的浮游动物群落的减少总体上是一致的。与降水波​​动有关的河流径流的强烈变化可能导致向特提斯海洋的养分供应的高度变化,从而影响区域生产力和氧气分布。模型结果表明,沉积记录中的轨道变异性和相关物种的灭绝与近地表至中层深度的周期性缺氧有关,而不是与泛thalaassic深海中普遍的缺氧事件有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号