首页> 外文期刊>Geotechnical testing journal >Experimental Study on Mechanical and Energy Properties of Granite under Dynamic Triaxial Condition
【24h】

Experimental Study on Mechanical and Energy Properties of Granite under Dynamic Triaxial Condition

机译:动态三轴条件下花岗岩力学和能量特性的实验研究

获取原文
获取原文并翻译 | 示例
       

摘要

This article experimentally investigates the mechanical and energy properties of granite under dynamic triaxial loading through improved split Hopkinson pressure bar tests. These tests are conducted under five confining pressures of 0, 2.5, 5, 10, and 20 MPa. The effects of impact velocity (or strain rate) and confining pressure on stress-strain curve, dynamic strength, plastic deformation, energy dissipation, and failure mode are explored. The test results show that the dynamic strength of the granite obviously increases with the increase of confining pressure and strain rate. The plastic deformation of the granite increases, and a plastic yield platform is detected in the stress-strain curve as the confining pressure rises. The influence of strain rate on the Mohr-Coulomb criterion is mainly embodied in the cohesion, and the three-parameter Bieniawski criterion is the best to fit these experimental data. The energy evolution course is divided into four stages according to the slope of stress-strain curve. The effects of energy dissipation density and strain rate on the granite strength are similar to each other. The strain rate and energy dissipation density have a good linear relationship with the incident energy under certain confining pressure. For the same incident energy, both strain rate and energy dissipation density decrease with the increase of confining pressure. However, no clear correlation between energy dissipation rate and incident energy is observed. When the confining pressure increases from 0 to 20 MPa, the dissipation rate of energy is decreased by 62.5 %. Besides, the crack propagation velocity and the damage degree of the granite increase with the energy dissipation density, and the failure modes of the specimens change from the axial splitting to the oblique shear as confining pressure increases.
机译:本文通过改进的霍普金森压力棒试验,通过实验研究了花岗岩在动态三轴载荷下的力学性能和能量性能。这些测试在0、2.5、5、10和20 MPa的五个限制压力下进行。探索了冲击速度(或应变率)和围压对应力-应变曲线,动态强度,塑性变形,能量耗散和破坏模式的影响。试验结果表明,随着围压和应变速率的增加,花岗岩的动态强度明显增加。花岗岩的塑性变形增加,并且随着围压升高,在应力-应变曲线中检测到塑性屈服平台。应变速率对Mohr-Coulomb准则的影响主要体现在内聚力中,而三参数Bieniawski准则最适合这些实验数据。根据应力-应变曲线的斜率,能量演化过程分为四个阶段。能量耗散密度和应变率对花岗岩强度的影响彼此相似。在一定围压下,应变率和能量耗散密度与入射能量具有良好的线性关系。对于相同的入射能量,随着围压的增加,应变率和能量耗散密度均减小。但是,没有观察到能量耗散率和入射能量之间的明确关联。当围压从0增加到20 MPa时,能量的耗散率降低了62.5%。此外,随着能量耗散密度的增加,花岗岩的裂纹扩展速度和损伤程度也随之增加,随着围压的增大,试样的破坏模式从轴向劈裂变为斜剪。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号