首页> 外文期刊>Geophysics >SUPPRESSION OF SEA-FLOOR SCATTERED ENERGY USING A DIP MOVEOUT APPROACH - APPLICATION TO THE MID-OCEAN RIDGE ENVIRONMENT
【24h】

SUPPRESSION OF SEA-FLOOR SCATTERED ENERGY USING A DIP MOVEOUT APPROACH - APPLICATION TO THE MID-OCEAN RIDGE ENVIRONMENT

机译:DIP移出法抑制海底散射能量-在中海里奇环境中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

Multichannel seismic (MCS) images are often contaminated with in- and out-of-plane scattering from the sea floor. This problem is especially acute in the midocean ridge environment where sea-floor roughness is pronounced. Energy shed from the unsedimented basaltic sea floor can obscure primary reflections such as Moho, and scattering off of elongated sea-floor features like abyssal hills and fault scarps can produce linear events in the seismic data that could be misinterpreted as subsurface reflections. Moreover, stacking at normal subsurface velocities may enhance these water-borne events, whose stacking velocity depends on azimuth and generally increases with time, making them indistinguishable from subsurface arrivals. To suppress scattered energy in deep water settings, we propose a processing scheme that invokes the application of dip moveout (DMO) to deliberately increase the differential moveout between sea-floor-scattered and subsurface events, thereby facilitating the removal of unwanted energy in the stacked section. After application of DMO, all sea-floor scatterers stack at the water velocity, while subsurface reflections like Moho still stack at their original velocity. The application of DMO in this manner is contrary to the intended use that reduces the differential moveout between dipping events and allows a single stacking velocity to be used. Unlike previous approaches to suppress scattered energy, dip filtering is applied in the common-midpoint (CMP) domain after DMO. Moreover, our DMO-based approach suppresses out-of-plane scattering, and therefore is not limited to removal of in-plane scattering as is the case with shot and receiver dip filtering techniques. The success of our DMO-based suppression scheme is limited to deep water (a few kilometers of water depth for conventional offsets), where the traveltime moveout of energy scattered from the sea floor has a hyperbolic moveout with a stacking velocity that depends on the cosine of the scatterer steering angle in a manner analogous to how the moveout of a dipping reflector depends on the dip angle. The application of DMO-based suppression to synthetics and MCS data collected along the southern East Pacific Rise demonstrates the effectiveness of our approach. Cleaner images of primary reflectors such as Moho are produced, even though present shot coverage along the East Pacific Rise is unduly sparse, resulting in a limited effective spatial bandwidth. [References: 18]
机译:多通道地震(MCS)图像经常受到海床面内和面外散射的污染。在海底粗糙度明显的中洋海脊环境中,这个问题尤为严重。从未沉积的玄武岩海底散发出来的能量会掩盖像Moho这样的主要反射,而漫长的海底特征(如深渊丘陵和断层赤道)的散射会在地震数据中产生线性事件,这些事件可能被误认为是地下反射。此外,以正常地下速度堆积可能会增强这些水传播事件,这些事件的堆积速度取决于方位角,并且通常随时间增加,从而使其与地下到达物无法区分。为了抑制深水环境中的分散能量,我们提出了一种处理方案,该方案调用了倾角偏移(DMO)的应用来故意增加海底散射事件与地下事件之间的差分偏移,从而有利于去除堆积中多余的能量部分。应用DMO后,所有海底散射体都以水速堆叠,而像Moho这样的地下反射仍以其原始速度堆叠。以这种方式施加DMO与减少浸渍事件之间的差异偏移并允许使用单个堆积速度的预期用途相反。与先前的抑制散射能量的方法不同,在DMO之后,在公共中点(CMP)域中应用了浸入滤波。此外,我们基于DMO的方法可抑制面外散射,因此不像散布和接收器浸滤技术那样,不限于消除面内散射。我们基于DMO的抑制方案的成功仅限于深水(对于常规偏移,水深为几公里),其中从海床散射的能量的行进时移具有双曲时移,其叠加速度取决于余弦以类似于浸入反射器的偏移如何取决于浸入角的方式来改变散射体转向角。将基于DMO的抑制作用应用于沿东太平洋上升南部收集的合成物和MCS数据,证明了我们方法的有效性。即使当前沿东太平洋高地的射影覆盖面过于稀疏,也可以产生较清晰的主反射镜(例如Moho)图像,从而导致有效空间带宽有限。 [参考:18]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号