首页> 外文期刊>Geophysical Prospecting >Combining discrete cosine transform and convolutional neural networks to speed up the Hamiltonian Monte Carlo inversion of pre-stack seismic data
【24h】

Combining discrete cosine transform and convolutional neural networks to speed up the Hamiltonian Monte Carlo inversion of pre-stack seismic data

机译:结合离散余弦变换和卷积神经网络,加快哈密顿蒙特卡罗预堆叠地震数据的逆变

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Markov chain Monte Carlo algorithms are commonly employed for accurate uncertainty appraisals in non-linear inverse problems. The downside of these algorithms is the considerable number of samples needed to achieve reliable posterior estimations, especially in high-dimensional model spaces. To overcome this issue, the Hamiltonian Monte Carlo algorithm has recently been introduced to solve geophysical inversions. Different from classical Markov chain Monte Carlo algorithms, this approach exploits the derivative information of the target posterior probability density to guide the sampling of the model space. However, its main downside is the computational cost for the derivative computation (i.e. the computation of the Jacobian matrix around each sampled model). Possible strategies to mitigate this issue are the reduction of the dimensionality of the model space and/or the use of efficient methods to compute the gradient of the target density. Here we focus the attention to the estimation of elastic properties (P-, S-wave velocities and density) from pre-stack data through a non-linear amplitude versus angle inversion in which the Hamiltonian Monte Carlo algorithm is used to sample the posterior probability. To decrease the computational cost of the inversion procedure, we employ the discrete cosine transform to reparametrize the model space, and we train a convolutional neural network to predict the Jacobian matrix around each sampled model. The training data set for the network is also parametrized in the discrete cosine transform space, thus allowing for a reduction of the number of parameters to be optimized during the learning phase. Once trained the network can be used to compute the Jacobian matrix associated with each sampled model in real time. The outcomes of the proposed approach are compared and validated with the predictions of Hamiltonian Monte Carlo inversions in which a quite computationally expensive, but accurate finite-difference scheme is used to compute the Jacobian matrix and with those obtained by replacing the Jacobian with a matrix operator derived from a linear approximation of the Zoeppritz equations. Synthetic and field inversion experiments demonstrate that the proposed approach dramatically reduces the cost of the Hamiltonian Monte Carlo inversion while preserving an accurate and efficient sampling of the posterior probability.
机译:马尔可夫链Monte Carlo算法通常用于非线性逆问题的准确不确定性评估。这些算法的缺点是实现可靠的后估计所需的相当数量的样本,尤其是在高维模型空间中。为了克服这个问题,最近被引入了Hamiltonian Monte Carlo算法来解决地球物理反演。不同于经典的马尔可夫链蒙特卡罗算法,这种方法利用目标后验概率密度的衍生信息来引导模型空间的采样。然而,其主要缺点是衍生计算的计算成本(即,每个采样模型周围的Jacobian矩阵的计算)。缓解此问题的可能策略是减少模型空间的维度和/或使用有效方法来计算目标密度的梯度。在这里,我们将注意力集中在通过非线性振幅与角度反转来估计从堆叠数据的弹性特性(P - ,S波速度和密度),其中哈密顿蒙特卡罗算法用于对后验概率进行采样。为了减少反转过程的计算成本,我们采用离散余弦变换来重新制作模型空间,我们训练卷积神经网络以预测每个采样模型周围的雅各族矩阵。用于网络的训练数据设置在离散余弦变换空间中,因此允许在学习阶段期间减少要优化的参数的数量。一旦训练,网络就可以用于将与每个采样模型相关联的雅孚矩阵实时计算。比较拟议方法的结果并验证了Hamiltonian Monte Carlo逆转的预测,其中一个相当计算昂贵的,但准确的有限差分方案用于计算Jacobian矩阵,并且通过用矩阵运算符替换雅各者而获得的那些来自Zoeppritz方程的线性近似。合成和现场反演实验表明,所提出的方法显着降低了汉密尔顿蒙特卡罗反转的成本,同时保留了对后验概率的准确和有效的采样。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号