...
首页> 外文期刊>Geomorphology >Significant decadal channel change 58-67 years post-dam accounting for uncertainty in topographic change detection between contour maps and point cloud models
【24h】

Significant decadal channel change 58-67 years post-dam accounting for uncertainty in topographic change detection between contour maps and point cloud models

机译:大坝后58-67年的年代际通道变化,这是等高线图和点云模型之间地形变化检测不确定性的原因

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Construction of digital elevation models (DEMs) and the subtraction of DEMs between different points in time as a method to determine temporal patterns of scour and fill is a highly valuable procedure emerging in geomorphology. These DEMs of Differences (DoDs) must be assessed for error in order to distinguish actual topographic change from uncertainty and surface error. Current methods include: (1) uniformly excluding all values that fall below a minimum threshold; (2) using a spatially variable approach such as the construction of minimum Level of Detection (LoD) grids; or (3) the creation of a fuzzy inference system. Although spatially variable methods for determining error have been more accurate in excluding noise without discarding large amounts of meaningful data, a challenge remains in performing DoDs against preexisting contour-based maps for which no original point data are available. The goals of this study were to (1) develop a method that overcomes the unknown point density of contour (and other historical) data sets and allows for some assessment of DoD uncertainty on the basis of information on topographic variability, (2) perform comprehensive uncertainty analysis testing to understand the opportunities and constraints associated with this new method, and (3) report and interpret the overall pattern and volume of decadal topographic change for a regulated river 67 years post-dam in light of alternate conjectured mechanisms of post-dam longitudinal profile adjustment. The key feature of the new approach is the introduction of a high-density artificial point grid that samples the topographic variability evident in the available historical data set. The testbed used to develop and assess this new DoD method was the ~37.5-km lower Yuba River, California. Historical data consisted of 0.6-m contours from a 1999 survey, while a more detailed point cloud was available for the most recent survey in 2006-2008. To evaluate uncertainty in the method, this study applied seven different uncertainty metrics of varying strictness (t= 1, t = 1.96, uniform 0.3-m exclusion, t = 1 plus uniform 0.3 m exclusion, t = 1 with LoD minimum at 0.3, t= 1.96 plus uniform 0.3-m exclusion, and t= 1.96 with LoD minimum at 0.3) and two different DoD adjustment methods (exclusion and subtraction). A stringent approach involving joint use of the contour half-interval and the spatially distributed LoD grid at a 95% confidence limit excluded 44.3% of the study area from spatial assessment of channel change and volumetric change computation. This preferred approach yielded an estimated 2.518 million m~3 of total scour and 2.455 million m~3 of total fill in 7-9 years. After considering different mapping epochs, the net annual average export was 17,000 m~3 (~32,500 tons) to the Feather River and a river-valley sediment yield of 2205 tons/km~2/year. This amount is 36% of the post-dam annual yield of gravel and cobble to the upstream reservoir that blocks sediment conveyance into the study domain, suggesting that the lowland system is still highly dynamic 67 years after the dam was built. The scientific significance of this is that the response of rivers to dams can be far more long-lasting and complex, depending on the suite of cumulative societal impacts to rivers. The ability to account for spatially explicit DoD uncertainty (i.e., data retention when uncertainty is low and data removal when uncertainty is high) when comparing historic contour-based and modern point cloud-based DEMs will allow for more detailed and reliable DoDs and sediment budgets in these cases.
机译:数字高程模型(DEM)的构建以及在不同时间点之间减去DEM作为确定冲刷和填充的时间模式的一种方法,在地貌学中是一种非常有价值的程序。必须对这些差异DEM(DoD)进行误差评估,以便将实际地形变化与不确定性和表面误差区分开。当前的方法包括:(1)统一排除所有低于最小阈值的值; (2)使用空间可变方法,例如构建最低检测水平(LoD)网格;或(3)建立模糊推理系统。尽管用于确定错误的空间可变方法在排除噪声而又不丢弃大量有意义的数据的情况下更加准确,但是在针对没有原始点数据可用的现有基于轮廓的地图执行DoD方面仍然存在挑战。这项研究的目标是(1)开发一种方法,该方法可以克服轮廓(和其他历史)数据集的未知点密度,并可以基于地形变异性信息对DoD不确定性进行一些评估,(2)进行综合不确定性分析测试,以了解与该新方法相关的机会和约束,以及(3)根据大坝后的其他推测机制,报告和解释大坝后67年的受管制河流年代际地形变化的总体模式和总量纵向轮廓调整。新方法的关键特征是引入了高密度人工点网格,该网格对可用历史数据集中明显的地形变化进行了采样。用于开发和评估这种新的国防部方法的试验台是在加利福尼亚尤巴河下游约37.5公里处。历史数据由1999年的一次调查得出的0.6米轮廓线组成,而更详细的点云可用于2006-2008年的最新调查。为了评估该方法的不确定性,本研究使用了七个不同的不确定性度量标准,其严格程度各不相同(t = 1,t = 1.96,统一0.3-m排除,t = 1和统一0.3m排除,t = 1,LoD最小值为0.3, t = 1.96加上统一的0.3-m排除,t = 1.96(最低LoD为0.3)和两种不同的DoD调整方法(排除和减法)。严格的方法涉及在95%置信度下联合使用轮廓半间隔和空间分布的LoD网格,从通道变化和体积变化计算的空间评估中排除了研究区域的44.3%。该首选方法在7-9年内估计产生了251.8万立方米的冲刷总量和245.5万立方米的冲刷总量。在考虑了不同的制图时代之后,每年向羽毛河的净年平均出口量为17,000 m〜3(〜32,500吨),河谷沉积物产量为2205吨/ km〜2 /年。这个数量是大坝后到上游水库的砾石和卵石年产量的36%,这阻止了泥沙输送到研究区域,这表明在大坝建成67年后,低地系统仍然是高度动态的。这的科学意义在于,河流对大坝的响应可能更加持久和复杂,这取决于对河流累积的一系列社会影响。当比较基于历史轮廓线和基于现代点云的DEM时,考虑到空间上明确的DoD不确定性(即,不确定性低时的数据保留和不确定性高时的数据删​​除)的能力将允许更详细和可靠的DoD和沉积物预算在这些情况下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号