首页> 外文期刊>Fusion Science and Technology >Alternative Plasma-Facing-Material Concepts for Extreme Plasma-Burning Nuclear Fusion Environments
【24h】

Alternative Plasma-Facing-Material Concepts for Extreme Plasma-Burning Nuclear Fusion Environments

机译:极端等离子燃烧核聚变环境的其他等离子面对材料概念

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

One of the most significant design challenges for materials performance exposed to extreme environments (e.g., heat, pressure, and radiation) is maintaining structural integrity while preventing or minimizing long-term damage. In a fusion nuclear reactor the expected operational environment is inherently extreme. The incident plasma will carry heat fluxes of the order of hundreds of MW?m(?2) and particle fluxes that can average 10(24)?m(?2)?s(?1) to plasma-facing components (PFCs). The fusion reactor wall will also need to operate at high temperatures near 800?C, and the incident energy of particles will vary from a few electron-volt ions to mega-electron-volt neutrons. The plasma-material interface is a critical region for design since material can be emitted both atomistically (e.g., through evaporation, sputtering, etc.) and/or macroscopically (i.e., during transient events, such as disruptions or edge-localized modes and dust generation) potentially poisoning the fusion plasma. Another challenge is the management of structural damage from neutrons up to hundreds of displacements per atom and transmuted He near 1000?atomic parts per million. Operating duty cycles will demand reliable performance over the course of not just seconds or minutes (i.e., as in most advanced fusion devices today and in the near future) but from months to years. Transformative innovations that can address these significant challenges are opening opportunities in adopting new and novel approaches. Controlling the architecture in advanced materials to tailor properties beyond structure and composition has provided a new paradigm in modern materials design. Tuning properties at localized regions of a cellular material to meet specific functional requirements introduces challenges to modern synthesis and advanced manufacturing methods. Beyond the design of bulk properties in cellular materials is the ability to also design smart, self-healing interfaces. This is particularly important for applications designing advanced materials for future reactor-relevant fusion environments. This paper will give an overview of both the technological gaps and the opportunities from advanced manufacturing that may enable the design of self-healing, adaptive materials for PFCs in future fusion reactor environments. Current progress as well as important innovation challenges will also be discussed.
机译:对于暴露于极端环境(例如,热,压力和辐射)下的材料性能而言,最重大的设计挑战之一是在保持结构完整性的同时,防止或最大程度地减少长期损坏。在聚变核反应堆中,预期的运行环境本质上是极端的。入射等离子体将载有数百MW?m(?2)的热通量和平均10(24)?m(?2)?s(?1)的等离子体通量(PFC) 。聚变反应堆壁还需要在800°C附近的高温下运行,粒子的入射能将从几个电子伏特离子到兆电子伏特中子不等。等离子体-材料界面是设计的关键区域,因为材料既可以原子发射(例如,通过蒸发,溅射等),也可以宏观发射(即,在诸如破坏或边缘定位模式和粉尘的瞬态事件中)发射。产生)可能使融合等离子体中毒。另一个挑战是中子对结构损伤的管理,每个中子的位移高达数百个位移,He变的He接近百万分之1000原子。工作占空比不仅需要几秒钟或几分钟的时间(即像今天和不久的将来最先进的聚变设备那样),而且还需要数月至数年的时间才能获得可靠的性能。可以应对这些重大挑战的变革性创新为采用新方法提供了机遇。控制先进材料的结构以调整结构和成分以外的属性,为现代材料设计提供了新的范例。调节多孔材料局部区域的性能以满足特定的功能要求,对现代合成和先进的制造方法提出了挑战。除了设计多孔材料的整体性质外,还可以设计智能的自修复界面。这对于为未来与反应堆相关的聚变环境设计先进材料的应用程序特别重要。本文将概述技术差距和先进制造带来的机遇,这些优势可能会为未来的聚变堆环境中的PFC设计自愈,自适应材料提供帮助。还将讨论当前的进展以及重大的创新挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号