首页> 外文期刊>Fusion Engineering and Design >ASDEX Upgrade enhancements in view of ITER application
【24h】

ASDEX Upgrade enhancements in view of ITER application

机译:针对ITER应用程序的ASDEX升级增强功能

获取原文
获取原文并翻译 | 示例
       

摘要

The aim of the ASDEX Upgrade (AUG) programme is to support the design, prepare the physics base and develop regimes beyond the baseline of ITER and for DEMO. Its ITER-like geometry, poloidal field system, versatile heating system and power fluxes make AUG particularly suited.rnAfter the transition to fully tungsten coated plasma facing components AUG could be operated without prior boronizations and a low permanent deuterium retention was found qualifying W as wall material. ITER-like baseline H-modes (H_(98) ~ 1, β_N ~ 2) were routinely achieved up to 1.2 MA plasma currents. W concentrations could be kept at an acceptable level of <5 × 10~(-5) by central wave heating (enhancing impurity outward transport) and ELM pacing with gas puffing. The compatibility of high performance improved H-modes, the ITER hybrid scenario, with an un-boronized W wall was demonstrated achieving H_(98) ~ 1.1 and β_N up to 2.6 at modest triangularities δ ≤ 0.3. This performance is reached despite the gas puffing needed for W influx control. Increasing δ to 0.35 allowed at even higher puff rates still a H_(98) ~ 1.1.rnReliable plasma operation in support of ITER comprised the demonstration of ECRF assisted low voltage plasma start-up and current rise at toroidal electric fields below 0.3 V/m resulting in a ITER compatible range of plasma internal inductance of 0.71-0.97. Disruption mitigation is feasible using strong gas puffs, and the achieved electron densities approach values needed for runaway suppression.rnPresent hardware extensions in support of ITER include the upgrading of ECRH by a 4 MW/10s system with large deposition variability (tuneable frequency between 105 and 140GHz, real-time steerable mirrors) for central heating and MHD mode control. A powerful system of 24 in-vessel coils produces error fields up to toroidal mode number n = 4 for ELM suppression and mode rotation control. In connection with a close conducting wall they will open up the road for RWM stabilization in advanced scenarios. For those we are considering LHCD for current drive and profile control with up to 500 kA driven current. The tungsten sources are dominated by sputtering from intrinsic light impurities, and the W influx from the outboard limiters are the main source for the core plasma. ICRH induced electric fields accelerate light impurities, restricting the use of ICRH to just after boronization. 4-strap antennas imbedded in extended wall structures might solve this problem. Finally, doubling the plasma volume with plasma currents above 2 MA in AUG could be the solution for a needed ITER satellite.
机译:ASDEX升级(AUG)计划的目的是支持设计,准备物理基础并开发超出ITER基准和DEMO基准的方案。其类似ITER的几何形状,极向电场系统,通用的加热系统和功率通量使AUG特别适合。rn在过渡到完全镀钨的等离子体处理部件后,AUG无需事先进行硼化就可以操作,并且发现永久性的低氘保留率使W成为壁材料。常规情况下,在高达1.2 MA的等离子体电流下,常规获得了ITER样的基线H型(H_(98)〜1,β_N〜2)。通过中心波加热(增强杂质的向外传输)和气体吹气进行ELM起搏,可以将W的浓度保持在<5×10〜(-5)的可接受水平。 ITER混合方案与未硼化的W壁在高性能改进的H模式下的兼容性得到了证明,在适度的三角形δ≤0.3时,H_(98)〜1.1和β_N高达2.6。尽管控制W涌入需要抽气,但仍可达到此性能。将δ增加到0.35,甚至在更高的抽吸速率下仍可达到H_(98)〜1.1.rn。支持ITER的可靠等离子体操作包括ECRF辅助的低压等离子体启动和在0.3 V / m以下的环形电场下电流上升的演示因此,ITER兼容的等离子体内部电感范围为0.71-0.97。使用强大的吹气来减轻干扰是可行的,并且达到的电子密度接近抑制失控所需的值。rn目前支持ITER的硬件扩展包括通过4 MW / 10s系统对ECRH进行升级,该系统具有较大的沉积可变性(可调谐频率在105至200之间)。 140GHz,实时可控镜,用于集中加热和MHD模式控制。一个强大的系统,由24个船内线圈组成,可产生高达n = 4的环形模式的误差场,用于ELM抑制和模式旋转控制。与封闭的导电墙相连,它们将为高级场景中的RWM稳定开辟道路。对于那些应用,我们正在考虑将LHCD用于电流驱动和最大500 kA驱动电流的曲线控制。钨源主要是由内在的轻杂质溅射形成的,而外部限制器的W流入是核心等离子体的主要来源。 ICRH感应的电场加速了轻杂质,将ICRH的使用限制在硼化之后。嵌入扩展墙结构中的4带天线可能会解决此问题。最后,在AUG中使用高于2 MA的等离子体电流将等离子体体积加倍可能是所需ITER卫星的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号