首页> 外文期刊>Fusion Engineering and Design >Maximum allowable fluid velocity and concern on piping stability of ITER Tokamak cooling water system
【24h】

Maximum allowable fluid velocity and concern on piping stability of ITER Tokamak cooling water system

机译:最大允许的流体速度和对迭代Tokamak冷却水系统管道稳定性的关注

获取原文
获取原文并翻译 | 示例
           

摘要

The ITER facility is an international research project that is under construction in Cadarache, France. US ITER is responsible for the design, engineering, and procurement of the Tokamak Cooling Water System (TCWS). TCWS piping size varies from DN40 to DN500. A design guideline specifies that piping smaller than DN150 must have a fluid velocity below 6 m/s, while a fluid velocity of up to 9 m/s is permitted for piping larger than DN150. Fluid velocity affects pipe size, pressure drop, pump size, piping support, etc. Factors considered when determining maximum allowable fluid velocity include erosion and corrosion, pump capacity, cavitation, hydrodynamic instability, and actual nuclear plant experience. The previous study performed to support the ITER piping design indicated that the hydrodynamic instability was a reason to limit maximum allowable fluid velocity below 6 m/s regardless of the piping size. However, the later study found that, when properly supported, pipe buckling and fluttering from hydrodynamic force would not cause instability. Instead, cavitation erosion-a pipeline phenomenon that forms vapor cavities in pipe-may limit allowable fluid velocity. Cavitation is a pipeline phenomenon that forms vapor cavities, which then go unstable and collapse violently in low-pressure, turbulent, flow-separation regions inside valves, elbows, pipe expansions, and other fluid handling components. Considering the cavitation issue, pressure drop, and a typical practice in a nuclear plant system, fluid velocity is to limit below 6 m/s for piping smaller than DN150 and 9 m/s for piping larger than DN150. This paper describes a hydraulic stability analysis, the fluid velocity generally accepted in nuclear plants and the cavitation-erosion limit in fluid velocity.
机译:ITER设施是一个国际研究项目,该项目正在法国切拉科院建设。美国erter负责托卡马克冷却水系统(TCW)的设计,工程和采购。 TCWS管道大小从DN40到DN500变化。设计指南规定了小于DN150的管道必须具有低于6m / s的流体速度,而允许大于DN150的管道的流体速度高达9米/秒。流体速度影响管尺寸,压降,泵尺寸,管道支撑等。在确定最大允许的流体速度时考虑的因素包括腐蚀和腐蚀,泵容量,空化,流体动力不稳定和实际核植物体验。为了支持迭代管道设计的先前研究表明,无论管道尺寸如何,流体动力不稳定性都是限制在6米/秒以下的最大允许流体速度的原因。然而,后来的研究发现,当正确支撑时,从流体动力学力的管道弯曲和飘动不会导致不稳定。相反,空化糜烂 - 一种管道现象,其在管道中形成蒸气腔 - 可以限制允许的流体速度。空化是一种形成蒸汽腔的管道现象,然后在阀门,肘部,管道膨胀和其他流体处理部件内的低压,湍流,流动分离区域中剧烈地脱离并且塌陷。考虑到核电站系统中的空化问题,压降和典型实践,流体速度是限制在低于DN150和9m / s的管道低于DN150的9米/秒。本文介绍了液压稳定性分析,核电站通常接受的流体速度以及流体速度的空化腐蚀极限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号