首页> 美国卫生研究院文献>NPJ Systems Biology and Applications >Quantitative Systems Biology to decipher design principles of a dynamic cell cycle network: the Maximum Allowable mammalian Trade–Off–Weight (MAmTOW)
【2h】

Quantitative Systems Biology to decipher design principles of a dynamic cell cycle network: the Maximum Allowable mammalian Trade–Off–Weight (MAmTOW)

机译:定量系统生物学解释动态细胞​​周期网络的设计原理:最大允许哺乳动物折衷与权重(MAmTOW)

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Network complexity is required to lend cellular processes flexibility to respond timely to a variety of dynamic signals, while simultaneously warranting robustness to protect cellular integrity against perturbations. The cell cycle serves as a paradigm for such processes; it maintains its frequency and temporal structure (although these may differ among cell types) under the former, but accelerates under the latter. Cell cycle molecules act together in time and in different cellular compartments to execute cell type-specific programs. Strikingly, the timing at which molecular switches occur is controlled by abundance and stoichiometry of multiple proteins within complexes. However, traditional methods that investigate one effector at a time are insufficient to understand how modulation of protein complex dynamics at cell cycle transitions shapes responsiveness, yet preserving robustness. To overcome this shortcoming, we propose a multidisciplinary approach to gain a systems-level understanding of quantitative cell cycle dynamics in mammalian cells from a new perspective. By suggesting advanced experimental technologies and dedicated modeling approaches, we present innovative strategies (i) to measure absolute protein concentration in vivo, and (ii) to determine how protein dosage, e.g., altered protein abundance, and spatial (de)regulation may affect timing and robustness of phase transitions. We describe a method that we name “Maximum Allowable mammalian Trade–Off–Weight” (MAmTOW), which may be realized to determine the upper limit of gene copy numbers in mammalian cells. These aspects, not covered by current systems biology approaches, are essential requirements to generate precise computational models and identify (sub)network-centered nodes underlying a plethora of pathological conditions.
机译:需要网络复杂性以赋予蜂窝处理灵活性以及时响应各种动态信号,同时保证鲁棒性以保护蜂窝完整性不受干扰。细胞周期是这种过程的范例。在前一种情况下,它保持其频率和时间结构(尽管在细胞类型之间可能有所不同),而在后一种情况下则加速。细胞周期分子在不同的细胞室中及时地共同起作用,以执行特定于细胞类型的程序。令人惊讶的是,分子转换发生的时机是由复合物中多种蛋白质的丰度和化学计量控制的。但是,一次研究一个效应子的传统方法不足以了解细胞周期蛋白复合物动力学的调节如何改变响应能力,但又保持鲁棒性。为了克服这个缺点,我们提出了一种多学科的方法来从新的角度获得对哺乳动物细胞中定量细胞周期动态的系统级理解。通过建议先进的实验技术和专用的建模方法,我们提出了创新的策略(i)测量体内绝对蛋白质浓度,和(ii)确定蛋白质剂量(例如改变的蛋白质丰度和空间(去)调节)如何影响时间和相变的鲁棒性。我们描述了一种方法,我们将其命名为“最大允许哺乳动物折衷与权重”(MAmTOW),该方法可用于确定哺乳动物细胞中基因拷贝数的上限。这些方面是当前系统生物学方法未涵盖的,对于生成精确的计算模型和识别以多种病理状况为基础的(子)网络中心节点是必不可少的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号