首页> 外文期刊>Fuel >Laminar flame characteristics and kinetic modeling study of methanol-isooctane blends at elevated temperatures
【24h】

Laminar flame characteristics and kinetic modeling study of methanol-isooctane blends at elevated temperatures

机译:甲醇-异辛烷混合物在高温下的层流火焰特性和动力学模型研究

获取原文
获取原文并翻译 | 示例
           

摘要

Laminar flame speeds of methanol-isooctane blends were experimentally determined using the spherically propagating flame in a constant volume chamber at two initial temperatures (363 and 393 K), different blending ratios of methanol in liquid volume (0%, 20%, 40%, 80%, 100%), and over equivalence ratios of 0.7-1.6. Nonlinear methodology was employed to remove the stretch effect in the data processing. Results indicate that laminar flame speeds of methanol flame reach the peak at equivalence ratio around 1.2 and that of isooctane at equivalence ratio around 1.1. For the mixtures with less than 40% methanol, laminar flame speeds show moderate increase at all equivalence ratios. However, further increasing methanol addition will greatly accelerate laminar flame speeds at rich mixture sides but give slight change at lean mixture sides. Markstein length shows an increase tendency with the methanol addition at the equivalence ratios larger than a critical value while Markstein length gives a decrease tendency at the equivalence ratios smaller than the critical value. The critical equivalence ratio is between 1.2 and 1.3. Among the thermal effect, diffusive effect and kinetic effect, the kinetic effect was found to be the major factor bringing the variation of laminar flame speed with the variation of blending ratio. A kinetic model (IM model) was developed on the basis of the isooctane model of Chaos et al. (2007). The IM model shows good prediction on measured laminar flame speeds under all conditions. Reaction pathway reveals that the HCO and H productions are promoted while the productions of stable species are inhibited in the case of methanol addition into the isooctane at rich mixture sides, resulting in the laminar flame speed enhancement. These behaviors are verified from the sensitivity analysis and the concentrations of the reactive radicals. (C) 2016 Elsevier Ltd. All rights reserved.
机译:甲醇-异辛烷混合物的层流火焰速度是通过在两个初始温度(363和393 K)下在恒定体积室内的球形传播火焰,液体中甲醇的不同混合比(0%,20%,40%, 80%,100%),以及超过0.7-1.6的当量比率。使用非线性方法来消除数据处理中的拉伸效应。结果表明,甲醇火焰的层流火焰速度在约1.2的当量比处达到峰值,而异辛烷在约1.1的当量比处达到峰值。对于甲醇含量少于40%的混合物,层流火焰速度在所有当量比下均显示适度增加。但是,进一步增加甲醇的添加量将大大加快浓混合气侧的层流火焰速度,但在稀混合气侧则有轻微变化。当甲醇当量比​​大于临界值时,马克斯坦长度显示出增加趋势,而当摩尔比小于临界值时,马克斯坦长度显示出减少趋势。临界当量比在1.2和1.3之间。在热效应,扩散效应和动力学效应中,动力学效应是导致层流火焰速度随混合比变化的主要因素。在Chaos等人的异辛烷模型的基础上建立了动力学模型(IM模型)。 (2007)。 IM模型在所有条件下都可以很好地预测层流火焰速度。反应路径表明,在富混合气侧向异辛烷中添加甲醇的情况下,促进了HCO和H的生成,同时抑制了稳定物种的生成,从而提高了层流火焰速度。这些行为已通过敏感性分析和反应性自由基的浓度得到验证。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Fuel》 |2016年第15期|836-845|共10页
  • 作者单位

    Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China;

    Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China;

    Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China;

    Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China;

    Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Methanol; Isooctane; Laminar flame speed; Kinetic modeling; Markstein length;

    机译:甲醇;异辛烷;层流火焰速度;运动学模型;Markstein长度;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号