...
首页> 外文期刊>Fuel >Numerical analysis of flow, mixture formation and combustion in a direct injection natural gas engine
【24h】

Numerical analysis of flow, mixture formation and combustion in a direct injection natural gas engine

机译:直喷天然气发动机的流动,混合气形成和燃烧的数值分析

获取原文
获取原文并翻译 | 示例

摘要

Numerical simulation of flow, mixture formation and combustion in a direct injection natural gas engine was conducted using the large-eddy simulation method. The dynamic thickened flame model coupling with a skeletal methane reaction mechanism was implemented and applied for the combustion simulation. In Situ Adaptive Tabulation (ISAT) method was used for the efficient chemistry solving. It was found that in-cylinder large-scale vortices are principally formed as the fuel jet impinges on the cylinder wall, and they enter the combustion chamber due to the effect of the squish flow at the end of the compression stoke. Most of in-cylinder combustible mixtures begin to be produced after the jet-wall impingement. Under the stoichiometric condition, with the delay of the fuel injection timing, the distribution of in-cylinder equivalence ratio is wider at the ignition timing, and the inhomogeneity of mixtures increases. The fuel injection timing determines the in-cylinder dominant combustion mode and the flame displacement speed at the initial stage of flame propagation by affecting the distribution of mixture equivalence ratio at the ignition timing, thereby affecting the increase of the flame area. Mass fractions of CO, H-2, H-atom and N2O in the rich-burn region are higher than those in the lean-burn region. Mass fractions of O-atom, OH, NCN, HCN and NNH in the lean-burn region are higher than those in the rich-burn region. In the region with temperature below 1800 K, NO is principally produced by NO2 conversion, while in the region with temperature above 1800 K, NO is mainly produced by the thermal pathway.
机译:使用大涡模拟方法对直喷天然气发动机的流动,混合气形成和燃烧进行了数值模拟。实现了带有骨架甲烷反应机理的动态增厚火焰模型,并将其应用于燃烧模拟。使用原位自适应制表法(ISAT)进行有效的化学反应。已经发现,当燃料射流撞击到气缸壁上时,主要形成气缸内大涡旋,并且由于压缩冲程结束时的急流的作用,它们进入燃烧室。气缸内可燃混合物大多数在喷射壁撞击后开始产生。在化学计量条件下,随着燃料喷射正时的延迟,在点火正时的缸内当量比的分布变宽,并且混合物的不均匀性增加。燃料喷射正时通过影响点火正时的混合物当量比的分布,从而确定了火焰传播初始阶段的缸内主导燃烧模式和火焰位移速度,从而影响了火焰面积的增加。浓燃区的CO,H-2,H原子和N2O的质量分数高于稀燃区的质量分数。稀燃区的O原子,OH,NCN,HCN和NNH的质量分数高于浓燃区的O-原子,OH,NCN,HCN和NNH的质量分数。在温度低于1800 K的区域中,NO主要由NO2转化产生,而在温度高于1800 K的区域中,NO主要由热通道产生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号