首页> 外文学位 >Multi-dimensional modeling of natural gas ignition, combustion and pollutant formation in direct injection engines.
【24h】

Multi-dimensional modeling of natural gas ignition, combustion and pollutant formation in direct injection engines.

机译:直喷式发动机的天然气点火,燃烧和污染物形成的多维模型。

获取原文
获取原文并翻译 | 示例

摘要

Models for describing ignition, combustion and pollutant formation in direct injection (DI) natural gas engines are developed in this work. These models are coupled with a multi-dimensional reactive flow code KIVA-3 to study the energy conversion process in DI engines. Emphasis is placed on gaining a fundamental understanding of each of these processes by studying them in detail individually.; Ignition of natural gas injected under compression ignition conditions is simulated by using a detailed chemical kinetic mechanism for natural gas oxidation (consisting of 22 species and 104 elementary reactions) in conjunction with KIVA-3. The mechanism is chosen after a systematic study of its predictive capabilities under typical end-of-compression conditions in DI engines. It is shown that the choice of a suitable detailed kinetic mechanism is essential to account for all the thermodynamic and fuel composition related factors that affect the ignition process in DI natural gas engines.; Calculations of ignition delay of different blends of natural gas in a combustion bomb compare very well with measurements. The coupled detailed kinetics-multi-dimensional flow model is also used to investigate the effect of parameters like chemical additives, injection rate and fuel temperature on ignition delay and ignition location. It is established that a specified mass of fuel burned is a more consistent criterion to detect the length of the ignition delay period than pressure rise while comparing different natural gas blends over a range of temperatures and pressures.; After ignition occurs, combustion of injected fuel with air is described using a mixing controlled model. Fuel and air are assumed to burn in stoichiometric proportions at a rate proportional to the rate of mixing. Transition from detailed kinetics to the combustion model is assumed to occur when 4% of the total injected fuel has burned. Pollutant formation is modeled by implementing the extended Zeldovich kinetic mechanism for thermal nitric oxide formation in KIVA-3.; Finally, calculations are done using the geometry of a medium size heavy-duty diesel engine with pure methane as fuel. It is shown that operating parameters like engine speed and load, coupled with different strategies for injection timing and level of boost, can have a significant impact on engine output. The tradeoffs between performance and emissions are discussed in terms of variation in engine operating conditions and injection strategies.
机译:在这项工作中,开发了用于描述直喷式(DI)天然气发动机的点火,燃烧和污染物形成的模型。这些模型与多维无功流代码KIVA-3耦合,以研究DI发动机中的能量转换过程。重点是通过单独详细研究每个过程来获得对这些过程的基本了解。通过与KIVA-3结合使用详细的天然气氧化化学动力学机理(由22种元素和104个元素反应组成),模拟了在压缩点火条件下喷射的天然气的点火。在对DI引擎典型压缩结束条件下的预测能力进行系统研究之后,选择了该机制。结果表明,选择合适的详细动力学机制对于解决影响DI天然气发动机点火过程的所有热力学和燃料成分相关因素至关重要。燃烧弹中天然气不同混合物的点火延迟计算与测量结果非常吻合。耦合的详细多维动力学模型也用于研究化学添加剂,喷射速率和燃料温度等参数对点火延迟和点火位置的影响。已经确定,在比较温度和压力范围内的不同天然气混合物时,指定的燃烧质量是检测压力延迟时间长于压力上升的更一致的标准。发生点火后,使用混合控制模型描述喷射的燃料与空气的燃烧。假定燃料和空气以与混合速率成比例的速率以化学计量比例燃烧。当总喷射燃料的4%燃烧时,假定发生了从详细动力学到燃烧模型的转变。通过在KIVA-3中实施扩展的Zeldovich动力学热一氧化氮形成机理来模拟污染物的形成。最后,使用以纯甲烷为燃料的中型重型柴油机的几何形状进行计算。结果表明,发动机转速和负载等运行参数,以及不同的喷射正时和增压水平策略,都可能对发动机输出产生重大影响。根据发动机工况和喷射策略的变化来讨论性能和排放之间的权衡。

著录项

  • 作者

    Agarwal, Apoorva.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Mechanical.; Engineering Automotive.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 185 p.
  • 总页数 185
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;自动化技术及设备;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号