首页> 外文OA文献 >Fuel Sensitive Combustion Model Based On Quasi-Dimensional Multi-Zone Approach For Direct Injection Compression Ignition Engines.
【2h】

Fuel Sensitive Combustion Model Based On Quasi-Dimensional Multi-Zone Approach For Direct Injection Compression Ignition Engines.

机译:基于准维多区域的直喷式压燃式点火发动机燃油敏感燃烧模型。

摘要

This study describes a development of fuel sensitive quasi-dimensional multi-zone model for a direct injection compression ignition (DICI) engine. The objective is to develop fuel sensitive sub models of the DICI combustion process and integrate them into a thermodynamic engine cycle simulation. The proposed spray and evaporation models comprise the sub-models including fuel sensitive spray breakup, improved zone velocity estimations with transient fuel injection, spray penetration and tracking of evaporated fuel components. On these foundations, ignition delay models are formulated with two different descriptions based on the origin of the charge properties in a DICI engine. The global ignition delay model is based on the global combustion chamber charge properties while the local ignition delay model includes variations in properties of each spray zones. The Cetane number is used to describe a fuel effect for both models. Then, the premixed combustion model is reformulated to calculate a proper burn rate profile with respect to equivalence ratio and scale the profile with diluted air. While the developed models are validated and evaluated by comparing the predictions with experimental data, some of important conclusions have been made. In the spray formation model, the degree of viscosity and surface tension effect on the spray formation and air entrainment is much more pronounced with DME fuel. For the fuels closer to the conventional DF2, the effect of those properties is minimal. The evaporation model includes the behavior of evaporation at high pressure. The rate of evaporation is usually suppressed with higher pressure but at lower temperature than typical engine-like conditions, the effect is inverted. This effect might be significant for the low temperature combustion. Of the two proposed ignition delay models the local model has a slightly better accuracy compared to the global model. The results demonstrate the improvements that can be obtained when additional fuel specific properties are included in the spray ignition model. Although the proposed fuel sensitive combustion model calculates fuel effect to the combustion, the effect of ignition delay to the overall result of engine cycle simulation was much more dominant with given fuels in this study.
机译:这项研究描述了一种用于直喷压缩点火(DICI)发动机的燃油敏感准多维多区域模型的开发。目的是开发DICI燃烧过程的燃料敏感子模型,并将其集成到热力学发动机循环仿真中。提议的喷雾和蒸发模型包括以下子模型:燃料敏感的喷雾破裂,通过瞬时燃料喷射改善的区域速度估计,喷雾渗透和蒸发的燃料组分的跟踪。在这些基础上,根据DICI发动机充气特性的来源,用两种不同的描述来制定点火延迟模型。整体点火延迟模型基于整体燃烧室充气特性,而局部点火延迟模型包括每个喷雾区域的特性变化。十六烷值用于描述两个模型的燃油效果。然后,重新编制预混燃烧模型,以计算关于当量比的适当燃烧率曲线,并用稀释空气缩放该曲线。虽然通过将预测结果与实验数据进行比较来验证和评估已开发的模型,但已得出一些重要的结论。在喷雾形成模型中,DME燃料对喷雾形成和空气夹带的粘度和表面张力的影响要明显得多。对于更接近常规DF2的燃料,这些特性的影响最小。蒸发模型包括高压下的蒸发行为。蒸发速率通常在较高压力下得到抑制,但在比典型发动机状条件更低的温度下,其作用相反。该效果对于低温燃烧可能是重要的。在两个建议的点火延迟模型中,局部模型的精度比全局模型好一些。结果表明,当喷雾点火模型中包含其他燃料特定属性时,可以获得改进。尽管所提出的燃料敏感燃烧模型计算了燃料对燃烧的影响,但在本研究中,对于给定燃料,点火延迟对发动机循环模拟总体结果的影响要大得多。

著录项

  • 作者

    Kwak Kyoung Hyun;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号